2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部抽象凸区域剖分差分进化算法

周晓根 张贵军 郝小虎

周晓根, 张贵军, 郝小虎. 局部抽象凸区域剖分差分进化算法. 自动化学报, 2015, 41(7): 1315-1327. doi: 10.16383/j.aas.2015.c140680
引用本文: 周晓根, 张贵军, 郝小虎. 局部抽象凸区域剖分差分进化算法. 自动化学报, 2015, 41(7): 1315-1327. doi: 10.16383/j.aas.2015.c140680
ZHOU Xiao-Gen, ZHANG Gui-Jun, HAO Xiao-Hu. Differential Evolution Algorithm with Local Abstract Convex Region Partition. ACTA AUTOMATICA SINICA, 2015, 41(7): 1315-1327. doi: 10.16383/j.aas.2015.c140680
Citation: ZHOU Xiao-Gen, ZHANG Gui-Jun, HAO Xiao-Hu. Differential Evolution Algorithm with Local Abstract Convex Region Partition. ACTA AUTOMATICA SINICA, 2015, 41(7): 1315-1327. doi: 10.16383/j.aas.2015.c140680

局部抽象凸区域剖分差分进化算法


DOI: 10.16383/j.aas.2015.c140680
详细信息
    作者简介:

    周晓根浙江工业大学信息工程学院博士研究生. 主要研究方向为智能信息处理, 优化理论及算法设计.E-mail: zhouxiaogen53@126.com

  • 基金项目:

    国家自然科学基金 (61075062), 浙江省自然科学基金 (LY13F0300 08), 浙 江省科技厅公益项目 (2014C33088), 浙江省重中之重学科开放基金 (20120811), 杭州市产学研合作项目 (20131631E31) 资助

Differential Evolution Algorithm with Local Abstract Convex Region Partition

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China (61075062), Natural Science Foundation of Zhejiang Province (LY13F030008), Public Welfare Project of Science Technology Department of Zhejiang Province (2014C33088), Open Fund for Key-Key Discipline of Zhejiang Province (20120811), and Cooperation Project of Industry-Academia-Research Institute of Hangzhou (20131631E31)

  • 摘要: 在差分进化算法框架下, 结合抽象凸理论, 提出一种局部抽象凸区域剖分差分进化算法(Local partition based differential evolution, LPDE). 首先, 通过对新个体的邻近个体构建分段线性下界支撑面, 实现搜索区域的动态剖分; 然后, 利用区域剖分特性逐步缩小搜索空间, 同时根据下界估计信息指导种群更新, 并筛选出较差个体; 其次, 借助下界支撑面的广义下降方向作局部增强, 并根据进化信息对搜索区域进行二次剖分; 最后, 根据个体的局部邻域下降方向对部分较差个体作增强处理. 数值实验结果表明了所提算法的有效性.
  • [1] Chen Bao-Lin. Theory and Methods of Optimization (2nd Edition). Beijing: Tsinghua University Press, 2005. (陈宝林. 最优化理论与算法. 第2版. 北京: 清华大学出版社, 2005.)
    [2] Walsh G R. Methods of Optimization. London: Wiley Press, 1975.
    [3] Nelder J A, Mead R. A simplex method for function minimization. The Computer Journal, 1965, 7(4): 308-313
    [4] Adjiman C S, Dallwig S, Floudas C A, Neumaier A. A global optimization method, αBB, for general twice-differentiable constrained NLPs: I. Theoretical advances. Computers & Chemistry Engineering, 1998, 22(9): 1137-1158
    [5] Adjiman C S, Androulakis I P, Floudas C A. A global optimization method, αBB, for general twice-differentiable constrained NLPs: II. Implementation and computational results. Computers & Chemistry Engineering, 1998, 22(9): 1159-1179
    [6] Skjäl A, Westerlund T, Misener R, Floudas C A. A generalization of the classical αBB convex underestimation via diagonal and nondiagonal quadratic terms. Journal of Optimization Theory and Applications, 2012, 154(2): 462-490
    [7] Beliakov G. Cutting angle method ---a tool for constrained global optimization. Optimization Methods and Software, 2004, 19(2): 137-151
    [8] Bagirov A M, Rubinov A M. Cutting angle method and a local search. Journal of Global Optimization, 2003, 27(2-3): 193-213
    [9] Beliakov G. Geometry and combinatorics of the cutting angle method. Optimization, 2003, 52(4-5): 379-394
    [10] Floudas C A, Gounaris C E. A review of recent advances in global optimization. Journal of Global Optimization, 2009, 45(1): 3-38
    [11] Das S, Suganthan P N. Differential evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31
    [12] Wang Da-Zhi, Liu Shi-Xin, Guo Xi-Wang. A multi-agent evolutionary algorithm for solving total tardiness permutation flow-shop scheduling problem. Acta Automatica Sinica, 2014, 40(3): 548-555 (王大志, 刘士新, 郭希旺. 求解总拖期时间最小化流水车间调度问题的多智能体进化算法. 自动化学报, 2014, 40(3): 548-555
    [13] Storn R, Price K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341-359
    [14] Islam S M, Das S, Ghosh S, Roy S, Suganthan P N. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(2): 482-500
    [15] Hu Rong, Qian Bin. A hybrid differential evolution algorithm for stochastic flow shop scheduling with limited buffers. Acta Automatica Sinica, 2009, 35(12): 1580-1586 (胡蓉, 钱斌. 一种求解随机有限缓冲区流水线调度的混合差分进化算法. 自动化学报, 2009, 35(12): 1580-1586)
    [16] Stoean C, Preuss M, Stoean R, Dumitrescu D. Multimodal optimization by means of a topological species conservation algorithm. IEEE Transactions on Evolutionary Computation, 2010, 14(6): 842-864
    [17] Kaelo P, Ali M M. A numerical study of some modified differential evolution algorithm. European Journal of Operational Research, 2006, 169(3): 1176-1184
    [18] Cai Y Q, Wang J H. Differential evolution with neighborhood and direction information for numerical optimization. IEEE Transactions on Cybernetics, 2013, 43(6): 2202-2215
    [19] Bhattacharya A, Chattopadhyay P K. Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Transactions on Power Systems, 2010, 25(4): 1955-1964
    [20] Wang Y, Cai Z X, Zhang Q F. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 55-66
    [21] Gong W Y, Cai Z H. Differential evolution with ranking-based mutation operators. IEEE Transactions on Cybernetics, 2013, 43(6): 2066-2081
    [22] Zhang Gui-Jun, He Yang-Jun, Guo Hai-Feng, Feng Yuan-Jing, Xu Jian-Ming. Differential evolution algorithm for multimodal optimization based on abstract convex underestimation. Journal of Software, 2013, 24(6): 1177-1195 (张贵军, 何洋军, 郭海锋, 冯远静, 徐建明. 基于广义凸下界估计的多模态差分进化算法. 软件学报, 2013, 24(6): 1177-1195)
    [23] Deng Yong-Yue, Zhang Gui-Jun. Multimodal optimization based on local abstract convexity support hyperplanes. Control Theory & Applications, 2014, 31(4): 458-466 (邓勇跃, 张贵军. 基于局部抽象凸支撑面的多模态优化算法. 控制理论与应用, 2014, 31(4): 458-466)
    [24] Rubinov A M. Abstract convexity and global optimization. Nonconvex Optimization and Its Applications. Dordrecht: Kluwer Academic Publishers, 2000.
    [25] Bagirov A M, Rubinov A M. Global minimization of increasing positively homogeneous functions over the unit simplex. Annals of Operations Research, 2000, 98(1-4): 171-187
    [26] Zhang Gui-Jun, Zhou Xiao-Gen. Population-based global optimization algorithm using abstract convex underestimate. Control and Decision, 2015, 30(6): 1116-1120(张贵军, 周晓根. 基于抽象凸下界估计的群体全局优化算法. 控制与决策, 2015, 30(6): 1116-1120)
    [27] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417
    [28] Corder G W, Foreman D I. Nonparametric Statistics for Non-statisticians: a Step-by-step Approach. Hoboken, NJ: Wiley Press, 2009.
  • [1] 项前, 周亚云, 吕志军. 资源约束项目的改进差分进化参数控制及双向调度算法[J]. 自动化学报, 2020, 46(2): 283-293. doi: 10.16383/j.aas.c170728
    [2] 周晓君, 阳春华, 桂卫华. 状态转移算法原理与发展[J]. 自动化学报, 2020, 46(): 1-15. doi: 10.16383/j.aas.c190624
    [3] 许美玲, 王依雯. 基于改进差分进化和回声状态网络的时间序列预测研究[J]. 自动化学报, 2019, 45(): 1-9. doi: 10.16383/j.aas.c180549
    [4] 谢理想, 万刚, 曹雪峰, 王庆贺, 王龙. 基于凸优化改进的相机全局位置估计方法[J]. 自动化学报, 2018, 44(3): 506-516. doi: 10.16383/j.aas.2018.c160639
    [5] Li Yuancheng, Li Zongpu, Yang Liqun, Wang Bei. An Improved Quantum Differential Evolution Algorithm for Optimization and Control in Power Systems Including DGs[J]. 自动化学报, 2017, 43(7): 1280-1288. doi: 10.16383/j.aas.2017.e150304
    [6] Chen Hao, Pan Xiaoying, Sun Jiaze. Global Optimization for Combination Test Suite by Cluster Searching Algorithm[J]. 自动化学报, 2017, 43(9): 1625-1635. doi: 10.16383/j.aas.2017.e160214
    [7] 张勇刚, 黄玉龙, 李宁, 赵琳. 带一步随机延迟量测非线性序列贝叶斯估计的条件后验克拉美罗下界[J]. 自动化学报, 2015, 41(3): 559-574. doi: 10.16383/j.aas.2015.c140391
    [8] 张英杰, 龚中汉, 陈乾坤. 基于免疫离散差分进化算法的复杂网络社区发现[J]. 自动化学报, 2015, 41(4): 749-757. doi: 10.16383/j.aas.2015.c140018
    [9] 高维尚, 邵诚. 复杂非凸约束优化难题与迭代动态多样进化算法[J]. 自动化学报, 2014, 40(11): 2469-2479. doi: 10.3724/SP.J.1004.2014.02469
    [10] 郭春钊, 山部尚孝, 三田诚一. 基于立体视觉平面单应性的智能车辆可行驶道路边界检测[J]. 自动化学报, 2013, 39(4): 371-380. doi: 10.3724/SP.J.1004.2013.00371
    [11] 刘明雍, 李闻白, 裴譞. 基于凸优化算法的无人水下航行器协同定位[J]. 自动化学报, 2010, 36(5): 704-710. doi: 10.3724/SP.J.1004.2010.00704
    [12] 陈荣元, 林立宇, 王四春, 秦前清. 数据同化框架下基于差分进化的遥感图像融合[J]. 自动化学报, 2010, 36(3): 392-398. doi: 10.3724/SP.J.1004.2010.00392
    [13] 朱腾, 王京春, 熊智华. 基于改进DE-NMPC的酸碱中和反应pH值控制[J]. 自动化学报, 2010, 36(1): 159-163. doi: 10.3724/SP.J.1004.2010.00159
    [14] 胡蓉, 钱斌. 一种求解随机有限缓冲区流水线调度的混合差分进化算法[J]. 自动化学报, 2009, 35(12): 1580-1586. doi: 10.3724/SP.J.1004.2009.01580
    [15] 李换琴, 万百五. 基于填充函数算法的工业产品小波网络质量模型[J]. 自动化学报, 2004, 30(2): 283-287.
    [16] 王子栋, 郭治. 摄动离散LYAPUNOV方程解的上下界估计[J]. 自动化学报, 1999, 25(1): 117-121.
    [17] 李兵, 蒋慰孙. SAGACIA全局优化方法及应用[J]. 自动化学报, 1998, 24(2): 269-271.
    [18] 汪涛, 邢小良, 庄新华. 无对应点三维表面重建的全局优化算法[J]. 自动化学报, 1993, 19(4): 497-499.
    [19] 刘整社, 陈宗基, 文传源. 差分模型参数递推估计的Householder变换法[J]. 自动化学报, 1992, 18(3): 315-324.
    [20] 张裕明, 吴林. 残差初值的自适应估计[J]. 自动化学报, 1991, 17(4): 395-403.
  • 加载中
计量
  • 文章访问数:  852
  • HTML全文浏览量:  56
  • PDF下载量:  892
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-07-20

局部抽象凸区域剖分差分进化算法

doi: 10.16383/j.aas.2015.c140680
    基金项目:

    国家自然科学基金 (61075062), 浙江省自然科学基金 (LY13F0300 08), 浙 江省科技厅公益项目 (2014C33088), 浙江省重中之重学科开放基金 (20120811), 杭州市产学研合作项目 (20131631E31) 资助

    作者简介:

    周晓根浙江工业大学信息工程学院博士研究生. 主要研究方向为智能信息处理, 优化理论及算法设计.E-mail: zhouxiaogen53@126.com

摘要: 在差分进化算法框架下, 结合抽象凸理论, 提出一种局部抽象凸区域剖分差分进化算法(Local partition based differential evolution, LPDE). 首先, 通过对新个体的邻近个体构建分段线性下界支撑面, 实现搜索区域的动态剖分; 然后, 利用区域剖分特性逐步缩小搜索空间, 同时根据下界估计信息指导种群更新, 并筛选出较差个体; 其次, 借助下界支撑面的广义下降方向作局部增强, 并根据进化信息对搜索区域进行二次剖分; 最后, 根据个体的局部邻域下降方向对部分较差个体作增强处理. 数值实验结果表明了所提算法的有效性.

English Abstract

周晓根, 张贵军, 郝小虎. 局部抽象凸区域剖分差分进化算法. 自动化学报, 2015, 41(7): 1315-1327. doi: 10.16383/j.aas.2015.c140680
引用本文: 周晓根, 张贵军, 郝小虎. 局部抽象凸区域剖分差分进化算法. 自动化学报, 2015, 41(7): 1315-1327. doi: 10.16383/j.aas.2015.c140680
ZHOU Xiao-Gen, ZHANG Gui-Jun, HAO Xiao-Hu. Differential Evolution Algorithm with Local Abstract Convex Region Partition. ACTA AUTOMATICA SINICA, 2015, 41(7): 1315-1327. doi: 10.16383/j.aas.2015.c140680
Citation: ZHOU Xiao-Gen, ZHANG Gui-Jun, HAO Xiao-Hu. Differential Evolution Algorithm with Local Abstract Convex Region Partition. ACTA AUTOMATICA SINICA, 2015, 41(7): 1315-1327. doi: 10.16383/j.aas.2015.c140680
参考文献 (28)

目录

    /

    返回文章
    返回