[1]
|
Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612
|
[2]
|
[2] Sheikh H R, Bovik A C. Image information and visual quality. IEEE Transactions on Image Processing, 2006, 15(2): 430-444
|
[3]
|
[3] Chandler D M, Hemami S S. VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298
|
[4]
|
[4] Larson E C, Chandler D M. Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 2010, 19(1): 011006-1- 011006-21
|
[5]
|
[5] Lissner I, Preiss J, Urban P, Lichtenauer M S, Zolliker P. Image-difference prediction: from grayscale to color. IEEE Transactions on Image Processing, 2013, 22(2): 435-446
|
[6]
|
[6] Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451
|
[7]
|
[7] Lin W S, Kuo C C J. Perceptual visual quality metrics: a survey. Journal of Visual Communication and Image Representation, 2011, 22(4): 297-312
|
[8]
|
[8] Wang Z, Simoncelli E P. Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Proceedings of the 2005 SPIE 5666, Human Vision and Electronic Imaging X. San Jose, USA: SPIE, 2005. 149-159
|
[9]
|
[9] Gao X B, Lu W, Tao D C, Li X L. Image quality assessment based on multiscale geometric analysis. IEEE Transactions on Image Processing, 2009, 18(7): 1409-1423
|
[10]
|
Campisi P, Carli M, Giunta G, Neri A. Blind quality assessment system for multimedia communications using tracing watermarking. IEEE Transactions on Signal Processing, 2003, 51(4): 996-1002
|
[11]
|
Li Q, Wang Z. Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2): 202-211
|
[12]
|
Chandler D M. Seven challenges in image quality assessment: past, present, and future research. ISRN Signal Processing, 2013, 2013: 1-53
|
[13]
|
Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F. TID2008 a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009, 10: 30-45
|
[14]
|
Marziliano P, Dufaux F, Winkler S, Ebrahimi T. A no-reference perceptual blur metric. In: Proceedings of the 2002 International Conference on Image Processing. New York, USA: IEEE, 2002. III-57-III-60
|
[15]
|
Marziliano P, Dufaux F, Winkler S, Ebrahimi T. Perceptual blur and ringing metrics: application to JPEG2000. Signal Processing: Image Communication, 2004, 19(2): 163-172
|
[16]
|
Ong E P, Lin W S, Lu Z K, Yang X K, Yao S S, Pan F, Jiang L J, Moschetti F. A no-reference quality metric for measuring image blur. In: Proceedings of the 7th International Symposium on Signal Processing and Its Applications. New York, USA: IEEE, 2003. 469-472
|
[17]
|
Ong E P, Lin W S, Lu Z K, Yao S S, Yang X K, Jiang L J. No-reference JPEG-2000 image quality metric. In: Proceedings of the 2003 International Conference on Multimedia and Expo. New York, USA: IEEE, 2003. I-545-I-548
|
[18]
|
Dijk J, van Ginkel M, van Asselt R J, van Vliet L J, Verbeek P W. A new sharpness measure based on Gaussian lines and edges. In: Proceedings of the 8th Annual Conference on the Advanced School for Computing and Imaging. Berlin, Germany: Springer, 2003. 149-156
|
[19]
|
Chung Y C, Wang J M, Bailey R R, Chen S W, Chang S L. A non-parametric blur measure based on edge analysis for image processing applications. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. New York, USA: IEEE, 2004. 356-360
|
[20]
|
Yan Q, Xu Y, Yang X K. No-reference image blur assessment based on gradient profile sharpness. In: Proceedings of the 2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. New York, USA: IEEE, 2013. 1-4
|
[21]
|
Wu S Q, Lin W S, Jian L J, Xiong W, Chen L H. An objective out-of-focus blur measurement. In: Proceedings of the 5th International Conference on Information, Communications and Signal Processing. Bangkok: IEEE, 2005. 334-338
|
[22]
|
Liang L H, Chen J H, Ma S W, Zhao D H, Gao W. A no-reference perceptual blur metric using histogram of gradient profile sharpness. In: Proceedings of the 16th IEEE International Conference on Image Processing. Cairo: IEEE, 2009. 4369-4372
|
[23]
|
Choi M G, Jung J H, Jeon J W. No-reference image quality assessment using blur and noise. World Academy of Science, Engineering and Technology, 2009, 50: 163-167
|
[24]
|
Wang X, Tian B F, Liang C, Shi D C. Blind image quality assessment for measuring image blur. In: Proceedings of the 2008 Congress on Image and Signal Processing. Sanya, Hainan, China: IEEE, 2008. 467-470
|
[25]
|
Wang Y F, Du H Q, Xu J T, Liu Y. A no-reference perceptual blur metric based on complex edge analysis. In: Proceedings of the 3rd IEEE International Conference on Network Infrastructure and Digital Content. Beijing, China: IEEE, 2012. 487-491
|
[26]
|
Soleimani S, Rooms F, Philips W. Efficient blur estimation using multi-scale quadrature filters. Signal Processing, 2013, 93(7): 1988-2002
|
[27]
|
Ferzli R, Karam L J. Human visual system based no-reference objective image sharpness metric. In: Proceedings of the 2006 IEEE International Conference on Image Processing. Atlanta, GA: IEEE, 2006. 2949-2952
|
[28]
|
Ferzli R, Karam L J. A no-reference objective image sharpness metric based on just-noticeable blur and probability summation. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, TX: IEEE, 2007. III-445-III-448
|
[29]
|
Ferzli R, Karam L J. A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Transactions on Image Processing, 2009, 18(4): 717-728
|
[30]
|
Sadaka N G, Karam L J, Ferzli R, Abousleman G P. A no-reference perceptual image sharpness metric based on saliency-weighted foveal pooling. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, CA: IEEE, 2008. 369-372
|
[31]
|
Narvekar N D, Karam L J. A no-reference perceptual image sharpness metric based on a cumulative probability of blur detection. In: Proceedings of the 2009 International Workshop on Quality of Multimedia Experience. San Diego, CA: IEEE, 2009. 87-91
|
[32]
|
Narvekar N D, Karam L J. A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Transactions on Image Processing, 2011, 20(9): 2678-2683
|
[33]
|
Zhong S H, Liu Y, Liu Y, Chung F L. A semantic no-reference image sharpness metric based on top-down and bottom-up saliency map modeling. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 1553-1556
|
[34]
|
Feichtenhofer C, Fassold H, Schallauer P. A perceptual image sharpness metric based on local edge gradient analysis. IEEE Signal Processing Letters, 2013, 20(4): 379-382
|
[35]
|
Marichal X, Ma W Y, Zhang H J. Blur determination in the compressed domain using DCT information. In: Proceedings of the 1999 International Conference on Image Processing. Kobe: IEEE, 1999, 2: 386-390
|
[36]
|
Caviedes J, Gurbuz S. No-reference sharpness metric based on local edge kurtosis. In: Proceedings of the 2002 International Conference on Image Processing. Rochester, NY, USA: IEEE, 2002, 3: III-53-III-56
|
[37]
|
Shaked D, Tastl I. Sharpness measure: towards automatic image enhancement. In: Proceedings of the 2005 IEEE International Conference on Image Processing. Genova: IEEE, 2005, 1: 937-940
|
[38]
|
Kristan M, Per J, Pere M, Kovačič S. A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform. Pattern Recognition Letters, 2006, 27(13): 1431-1439
|
[39]
|
Ferzli R, Karam L J. No-reference objective wavelet based noise immune image sharpness metric. In: Proceedings of the 2005 IEEE International Conference on Image Processing. New York, USA: IEEE, 2005, 1: I-405-I-408
|
[40]
|
Ciancio A, da Costa A L N, da Silva E A B, Said A, Samadani R, Obrador P. Objective no-reference image blur metric based on local phase coherence. Electronics Letters, 2009, 45(23): 1162-1163
|
[41]
|
Hassen R, Wang Z, Salama M. No-reference image sharpness assessment based on local phase coherence measurement. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing. Dallas, TX: IEEE, 2010. 2434-2437
|
[42]
|
Hassen R, Wang Z, Salama M M A. Image sharpness assessment based on local phase coherence. IEEE Transactions on Image Processing, 2013, 22(7): 2798-2810
|
[43]
|
Tong H H, Li M J, Zhang H J, Zhang C S. Blur detection for digital images using wavelet transform. In: Proceedings of the 2004 IEEE International Conference on Multimedia and Expo. Taipei, China: IEEE, 2004. 17-20
|
[44]
|
Kerouh F. A no reference quality metric for measuring image blur in wavelet domain. International Journal of Digital Information and Wireless Communications, 2012, 4(1): 767- 776
|
[45]
|
Vu P V, Chandler D M. A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Signal Processing Letters, 2012, 19(7): 423-426
|
[46]
|
Hsin C, Jang J W, Shin S J, Chen S H. A no-reference objective image sharpness metric based on a filter bank of Gaussian derivative wavelets. In: Proceedings of the 2011 International Conference on Multimedia Technology. Hangzhou, China: IEEE, 2011. 3362-3365
|
[47]
|
Serir A. No-reference blurred image quality assessment. In: Proceedings of the 3rd European Workshop on Visual Information Processing. Paris, France: IEEE, 2011. 168-173
|
[48]
|
Serir A, Beghdadi A, Kerouh F. No-reference blur image quality measure based on multiplicative multiresolution decomposition. Journal of Visual Communication and Image Representation, 2013, 24(7): 911-925
|
[49]
|
Zhang T J, Zhang H, Yuan D. A no-reference quality metric for blur image. In: Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. Washington DC, USA: IEEE, 2013. 1813-1816
|
[50]
|
Zhu X, Milanfar P. A no-reference sharpness metric sensitive to blur and noise. In: Proceedings of the 2009 International Workshop on Quality of Multimedia Experience. San Diego, CA: IEEE, 2009. 64-69
|
[51]
|
Zhu X, Milanfar P. A no-reference image content metric and its application to denoising. In: Proceedings of the 17th International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 1145-1148
|
[52]
|
Zhu X, Milanfar P. Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Transactions on Image Processing, 2010, 19(12): 3116-3132
|
[53]
|
Chen M J, Bovik A C. No-reference image blur assessment using multiscale gradient. In: Proceedings of the 2009 International Workshop on Quality of Multimedia Experience. San Diego, CA: IEEE, 2009. 70-74
|
[54]
|
Chen M J, Bovik A C. No-reference image blur assessment using multiscale gradient. EURASIP Journal on Image and Video Processing, 2011, 3: 1-11
|
[55]
|
Vu C T, Phan T D, Chandler D M. S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Transactions on Image Processing, 2012, 21(3): 934- 945
|
[56]
|
Ciancio A, da Costa A L N T, da Silva E A B, Said A, Samadani R, Obrador P. No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Transactions on Image Processing, 2011, 20(1): 64-75
|
[57]
|
Crete F, Dolmiere T, Ladret P, Nicolas M. The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: Proceedings of the 2007 SPIE Human Vision and Electronic Imaging XII. San Jose, USA: SPIE, 2007. 1-11
|
[58]
|
Zhang Rong, Yang Jian-Chao, Zhang Qian, Liu Zheng-Kai. Motion blur extent evaluation of SAR images. Acta Electronica Sinica, 2007, 35(10): 2019-2022(张荣, 杨建朝, 张倩, 刘政凯. SAR图像运动模糊参数估计. 电子学报, 2007, 35(10): 2019-2022)
|
[59]
|
Tsomko E, Kim H J. Efficient method of detecting globally blurry or sharp images. In: Proceedings of the 9th International Workshop on Image Analysis for Multimedia Interactive Services. Klagenfurt, Austria: IEEE, 2008. 171-174
|
[60]
|
Liu D B, Chen Z B, Ma H D, Xu F, Gu X D. No reference block based blur detection. In: Proceedings of the 2009 International Workshop on Quality of Multimedia Experience. San Diego, CA: IEEE, 2009. 75-80
|
[61]
|
Wee C Y, Paramesran R. Image sharpness measure using eigenvalues. In: Proceedings of the 9th International Conference on Signal Processing. Beijing, China: IEEE, 2008. 840-843
|
[62]
|
Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425-455
|
[63]
|
Zhang Qi, Liang De-Qun, Fan Xin. Estimating image noise based on region segmentation in the wavelet domain. Computer Engineering, 2004, 30(8): 37-39(张旗, 梁德群, 樊鑫. 基于小波域的图像噪声估计新方法. 计算机工程, 2004, 30(8): 37-39)
|
[64]
|
Li Tian-Yi, Wang Ming-Hui, Wu Ya-Juan, Chang Hua-Wen. Wavelet-based approach for estimating the variance of noise in images. Journal of Beijing University of Technology, 2012, 38(9): 1402-1407(李天翼, 王明辉, 吴亚娟, 常化文. 图像噪声方差的小波域估计算法. 北京工业大学学报, 2012, 38(9): 1402-1407)
|
[65]
|
Meer P, Jolion J M, Rosenfeld A. A fast parallel algorithm for blind estimation of noise variance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(2): 216-223
|
[66]
|
Salmeri M, Mencattini A, Ricci E, Salsano A. Noise estimation in digital images using fuzzy processing. In: Proceedings of the 2001 International Conference on Image Processing. Thessaloniki: IEEE, 2001, 1: 517-520
|
[67]
|
Tian J, Chen L. Image noise estimation using a variation-adaptive evolutionary approach. IEEE Signal Processing Letters, 2012, 19(7): 395-398
|
[68]
|
Sari S, Roslan H, Shimamura T. Noise estimation by utilizing mean deviation of smooth region in noisy image. In: Proceedings of the 4th International Conference on Computational Intelligence, Modelling and Simulation. Kuantan, Malaysia: IEEE, 2012. 232-236
|
[69]
|
Huang X T, Chen L, Tian J, Zhang X L, Fu X W. Blind noisy image quality assessment using block homogeneity. Computers and Electrical Engineering, 2014, 40(3): 796- 807
|
[70]
|
Liu X H, Tanaka M, Okutomi M. Practical signal-dependent noise parameter estimation from a single noisy image. IEEE Transactions on Image Processing, 2014, 23(10): 4361- 4371
|
[71]
|
Immerkaer J. Fast noise variance estimation. Computer Vision and Image Understanding, 1996, 64(2): 300-302
|
[72]
|
Shin D H, Park R H, Yang S, Jung J H. Block-based noise estimation using adaptive gaussian filtering. IEEE Transactions on Consumer Electronics, 2005, 51(1): 218-226
|
[73]
|
Constantin J, Haddad S, Constantin I, Bigand A, Hamad D. No-reference quality assessment in global illumination algorithms based on SVM. In: Proceedings of the 25th International Conference on Microelectronics. Beirut, Lebanon: IEEE, 2013. 1-4
|
[74]
|
Rank K, Lendl M, Unbehauen R. Estimation of image noise variance. IEE Proceedings Vision, Image, and Signal Processing, 1999, 146(2): 80-84
|
[75]
|
Tai S C, Yang S M. A fast method for image noise estimation using Laplacian operator and adaptive edge detection. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing. St Julians: IEEE, 2008. 1077-1081
|
[76]
|
Laligant O, Truchetet F, Fauvet E. Noise estimation from digital step-model signal. IEEE Transactions on Image Processing, 2013, 22(12): 5158-5167
|
[77]
|
Konstantinides K, Natarajan B, Yovanof G S. Noise estimation and filtering using block-based singular value decomposition. IEEE Transactions on Image Processing, 1997, 6(3): 479-483
|
[78]
|
Liu Wei. Gaussian noise level estimation in SVD domain for images. Journal of Image and Graphics, 2012, 17(8): 923- 933 (柳薇. SVD域的图像高斯噪声强度估计. 中国图象图形学报, 2012, 17(8): 923-933)
|
[79]
|
Liu W, Lin W S. Additive white Gaussian noise level estimation in SVD domain for images. IEEE Transactions on Image Processing, 2013, 22(3): 872-883
|
[80]
|
Zhai G T, Wu X L. Noise estimation using statistics of natural images. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE, 2011. 1857-1860
|
[81]
|
Pyatykh S, Hesser J, Zheng L. Image noise level estimation by principal component analysis. IEEE Transactions on Image Processing, 2013, 22(2): 687-699
|
[82]
|
Tang C, Yang X, Zhai G. Noise estimation of natural images via statistical analysis and noise injection. IEEE Transactions on Circuits and Systems for Video Technology, 2014, PP(99): 1-12
|
[83]
|
Wu H R, Yuen M. A generalized block-edge impairment metric for video coding. IEEE Signal Processing Letters, 1997, 4(11): 317-320
|
[84]
|
Yang J H, Choi H, Kim T. Noise estimation for blocking artifacts reduction in DCT coded images. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(7): 1116-1120
|
[85]
|
Pan F, Lin X, Rahardja S, Lin W, Ong E, Yao S, Lu Z, Yang X. A locally-adaptive algorithm for measuring blocking artifacts in images and videos. In: Proceedings of the 2004 International Symposium on Circuits and Systems. New York, USA: IEEE, 2004, 3: III-925-928
|
[86]
|
Suthaharan S. A perceptually significant block-edge impairment metric for digital video coding. In: Proceedings of the 2003 International Conference on Multimedia and Expo. Baltimore, MD, USA: IEEE, 2003, 2: II-585-II-588
|
[87]
|
Kirenko I O, Muijs R, Shao L. Coding artifact reduction using non-reference block grid visibility measure. In: Proceedings of the 2006 IEEE International Conference on Multimedia and Expo. Toronto, Ont.: IEEE, 2006. 469-472
|
[88]
|
Perra C, Massidda F, Giusto D D. Image blockiness evaluation based on Sobel operator. In: Proceedings of the 2005 IEEE International Conference on Image Processing. Genova: IEEE, 2005. I-389-392
|
[89]
|
Zhang H, Zhou Y R, Tian X. A weighted Sobel operator-based no-reference blockiness metric. In: Proceedings of the 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Wuhan, China: IEEE, 2008. 1002-1006
|
[90]
|
Lee S, Park S J. A new image quality assessment method to detect and measure strength of blocking artifacts. Signal Processing: Image Communication, 2012, 27(1): 31-38
|
[91]
|
Chen J H, Zhang Y B, Liang L H, Ma S W, Wang R G, Gao W. A no-reference blocking artifacts metric using selective gradient and plainness measures. In: Proceedings of the 9th Pacific Rim Conference on Multimedia: Advances in Multimedia Information Processing. Berlin, Germany: Springer, 2008. 894-897
|
[92]
|
Hasan M M, Ahn K, Haque M S, Oksam C. Blocking artifact detection by analyzing the distortions of local properties in images. In: Proceedings of the 14th International Conference on Computer and Information Technology. Dhaka, Bangladeshi: IEEE, 2011. 475-480
|
[93]
|
Pan F, Lin X, Rahardja S, Ong E P, Lin W S. Measuring blocking artifacts using edge direction information [image and video coding]. In: Proceedings of the 2004 IEEE International Conference on Multimedia and Expo. Taipei, China: IEEE, 2004. 1491-1494
|
[94]
|
Pan F, Lin X, Rahardja S, Ong E P, Lin W S. Using edge direction information for measuring blocking artifacts of images. Multidimensional Systems and Signal Processing, 2007, 18(4): 297-308
|
[95]
|
Wang Z, Bovik A C, Evan B L. Blind measurement of blocking artifacts in images. In: Proceedings of the 2000 International Conference on Image Processing. Vancouver, BC: IEEE, 2000. 981-984
|
[96]
|
Meesters L, Martens J B. A single-ended blockiness measure for JPEG-coded images. Signal Processing, 2002, 82(3): 369 -387
|
[97]
|
Liu H T, Heynderickx I. A perceptually relevant no-reference blockiness metric based on local image characteristics. EURASIP Journal on Advances in Signal Processing, 2009, 2009: 1-14
|
[98]
|
Suthaharan S. No-reference visually significant blocking artifact metric for natural scene images. Signal Processing, 2009, 89(8): 1647-1652
|
[99]
|
Chen C H, Bloom J A. A blind reference-free blockiness measure. In: Proceedings of the 11th Pacific Rim Conference on Advances in Multimedia Information Processing. Berlin, Germany: Springer, 2010, 1: 112-123
|
[100]
|
Bovik A C, Liu S Z. DCT-domain blind measurement of blocking artifacts in DCT-coded images. In: Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, UT: IEEE, 2001, 3: 1725-1728
|
[101]
|
Liu S Z, Bovik A C. Efficient DCT-domain blind measurement and reduction of blocking artifacts. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(12): 1139-1149
|
[102]
|
Park C S, Kim J H, Ko S J. Fast blind measurement of blocking artifacts in both pixel and DCT domains. Journal of Mathematical Imaging and Vision, 2007, 28(3): 279-284
|
[103]
|
Ryu S, Sohn K. Blind blockiness measure based on marginal distribution of wavelet coefficient and saliency. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC: IEEE, 2013. 1874-1878
|
[104]
|
Wang Z, Sheikh H R, Bovik A C. No-reference perceptual quality assessment of JPEG compressed images. In: Proceedings of the 2002 International Conference on Image Processing. Rochester, NY, USA: IEEE, 2002. I-477-I-480
|
[105]
|
Colestaneh S A, Chandler D M. No-reference quality assessment of jpeg images via a quality relevance map. IEEE Signal Processing Letters, 2014, 21(2): 155-158
|
[106]
|
Gastaldo P, Zunino R. Neural networks for the no-reference assessment of perceived quality. Journal of Electronic Imaging, 2005, 14(3): 033004, 1-11
|
[107]
|
Bagade J V, Dandawate Y H, Singh K. No reference image quality assessment using block based features and artificial neural network. In: Proceedings of the 4th International Conference, ObCom 2011. Berlin, Germany: Springer, 2011, 270: 128-138
|
[108]
|
Corchs S, Gasparini F, Schettini R. No reference image quality classification for JPEG-distorted images. Digital Signal Processing, 2014, 30: 86-100
|
[109]
|
Sheikh H R, Bovik A C, Cormack L. Blind quality assessment of JPEG2000 compressed images using natural scene statistics. In: Proceedings of the 37th Asilomar Conference on Signals, Systems, and Computers. New York, USA: IEEE, 2003. 1403-1407
|
[110]
|
Sheikh H R, Bovik A C, Cormack L. No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 2005, 14(11): 1918- 1927
|
[111]
|
Zhou J C, Xiao B H, Li Q D. A no-reference image quality assessment method for JPEG2000. In: Proceedings of the 2008 International Joint Conference on Neural Networks. Hong Kong, China: IEEE, 2008. 863-868
|
[112]
|
Vu P V, Chandler D M. A no-reference quality assessment algorithm for JPEG2000 compressed images based on local sharpness. In: Proceedings of the 2013 SPIE Image Quality and System Performance X. California, USA: SPIE, 2013, 8653: 1-8
|
[113]
|
Tong H H, Li M J, Zhang H J, Zhang C S. No-reference quality assessment for JPEG2000 compressed images. In: Proceedings of the 2004 International Conference on Image Processing. Singapore: IEEE, 2004. 3539-3542
|
[114]
|
Sazzad Z M P, Kawayoke Y, Horita Y. Spatial features based no-reference image quality assessment for JPEG2000. In: Proceedings of the 14th IEEE International Conference on Image Processing. San Antonio, TX: IEEE, 2007, 3: III-517-III-520
|
[115]
|
Sazzad Z M P, Kawayoke Y, Horita Y. No-reference image quality assessment for JPEG2000 based on spatial features. Signal Processing: Image Communication, 2008, 23(4): 257 -268
|
[116]
|
Zhang J, Le T M. A new no-reference quality metric for JPEG2000 images. IEEE Transactions on Consumer Electronics, 2010, 56(2): 743-750
|
[117]
|
Zhang J, Ong S H, Le T M. Kurtosis-based no-reference quality assessment of JPEG2000 images. Signal Processing: Image Communication, 2011, 26(1): 13-23
|
[118]
|
Barland R, Saadane A. A reference free quality metric for compressed images. In: Proceedings of the 2nd International Workshop on Video Processing and Quality Metrics for Consumer Electronics. Arizona State University, USA: IEEE, 2006. 1-6
|
[119]
|
Liu H T, Redi J A, Alers H, Zunino R, Heynderickx I. No-reference image quality assessment based on localized gradient statistics: application to JPEG and JPEG2000. In: Proceedings of the 2010 IS T-SPIE Electronic Imaging and Human Vision and Electronic Imaging XV. San Jose, USA: SPIE, 2010, 7527: 1-9
|
[120]
|
Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 2010, 17(2): 513-516
|
[121]
|
Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 2011, 20(12): 3350- 3364
|
[122]
|
Mittal A, Moorthy A K, Bovik A C. Blind/referenceless image spatial quality evaluator. In: Proceedings of the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA: IEEE, 2011. 723-727
|
[123]
|
Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708
|
[124]
|
Saad M A, Bovik A C, Charrier C. Natural DCT statistics approach to no-reference image quality assessment. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 313-316
|
[125]
|
Tang H X, Joshi N, Kapoor A. Learning a blind measure of perceptual image quality. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 305-312
|
[126]
|
Zhang M, Xie J, Zhou X R, Fujita H. No-reference image quality assessment based on local binary pattern statistics. In: Proceedings of the 2013 Visual Communications and Image Processing. Kuching, Malaysia: IEEE, 2013. 1-6
|
[127]
|
Zhang Y, Chandler D M. An algorithm for no-reference image quality assessment based on log-derivative statistics of natural scenes. In: Proceedings of the 2013 SPIE The International Society for Optical Engineering. California, USA: SPIE, 2013, 22(4): 1-10
|
[128]
|
Zhang Y, Chandler D M. No-reference image quality assessment based on log-derivative statistics of natural scenes. Journal of Electronic Imaging, 2013, 22(4): 043025-1- 043025-22
|
[129]
|
Liu L X, Dong H P, Huang H, Bovik A C. No-reference image quality assessment in curvelet domain. Signal Processing: Image Communication, 2014, 29(4): 494-505
|
[130]
|
Saad M A, Bovik A C, Charrier C. A DCT statistics-based blind image quality index. IEEE Signal Processing Letters, 2010, 17(6): 583-586
|
[131]
|
Saad M A, Bovik A C, Charrier C. DCT statistics model-based blind image quality assessment. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE, 2011. 3093-3096
|
[132]
|
Saad M A, Bovik A C, Charrier C. Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352
|
[133]
|
Jiao S H, Qi H, Lin W S, Shen W H. Fast and efficient blind image quality index in spatial domain. Electronics Letters, 2013, 49(18): 1137-1138
|
[134]
|
Mittal A, Soundararajan R, Bovik A C. Making a ''completely blind'' image quality analyzer. IEEE Signal Processing Letters, 2013, 20(3): 209-212
|
[135]
|
Abdalmajeed S, Jiao S H. No-reference image quality assessment algorithm based on Weibull statistics of log-derivatives of natural scenes. Electronics Letters, 2014, 50(8): 595-596
|
[136]
|
Ye P, Doermann D. No-reference image quality assessment based on visual codebook. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE, 2011. 3089-3092
|
[137]
|
Ye P, Doermann D. No-reference image quality assessment using visual codebooks. IEEE Transactions on Image Processing, 2012, 21(7): 3129-3138
|
[138]
|
Ye P, Kumar J, Kang L, Doermann D. Unsupervised feature learning framework for no-reference image quality assessment. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012. 1098-1105
|
[139]
|
Mittal A, Muralidhar G S, Ghosh J, Bovik A C. Blind image quality assessment without human training using latent quality factors. IEEE Signal Processing Letters, 2012, 19(2): 75-78
|
[140]
|
Fang R G, Wu D P. No-reference image quality assessment based on BNB measurement. In: Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Beijing, China: IEEE, 2013. 528-532
|
[141]
|
Tong H H, LI M J, Zhang H J, Zhang C S, He J, Ma W Y. Learning no-reference quality metric by examples. In: Proceedings of the 11th International Multimedia Modelling Conference. Melbourne, Australia: IEEE, 2005. 247-254
|
[142]
|
Shen J, Li Q, Erlebacher G. Hybrid no-reference natural image quality assessment of noisy, blurry, JPEG2000, and JPEG images. IEEE Transactions on Image Processing, 2011, 20(8): 2089-2098
|
[143]
|
Wu Q B, Li H L, Ngan K N, Zeng B, Gabbouj M. No-reference image quality metric via distortion identification and multi-channel label transfer. In: Proceedings of the 2014 IEEE International Symposium on Circuits and Systemss. Melbourne VIC: IEEE, 2014. 530-533
|
[144]
|
Suresh S, Babu R V, Sundararajan N. Image quality measurement using sparse extreme learning machine classifier. In: Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2006. 1-6
|
[145]
|
Suresh S, Babu R V, Kim H J. No-reference image quality assessment using modified extreme learning machine classifier. Applied Soft Computing, 2009, 9(2): 541-552
|
[146]
|
Li C F, Bovik A C, Wu X J. Blind image quality assessment using a general regression neural network. IEEE Transactions on Neural Networks, 2011, 22(5): 793-799
|
[147]
|
Li Chao-Feng, Tang Guo-Feng, Wu Xiao-Jun, Ju Yi-Wen. No-reference image quality assessment with learning phase congruency feature. Journal of Electronics and Information Technology, 2013, 35(2): 484-488(李朝锋, 唐国凤, 吴小俊, 琚宜文. 学习相位一致特征的无参考图像质量评价. 电子与信息学报, 2013, 35(2): 484-488)
|
[148]
|
Kang L, Ye P, Li Y, Doermann D. Convolutional neural networks for no-reference image quality assessment. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH: IEEE, 2014. 1733 -1740
|
[149]
|
Hou W L, Gao X B, Tao D C, Li X L. Blind image quality assessment via deep learning. IEEE Transactions on Neural Networks and Learning Systems, 2014, 26(6): 1275-1286
|
[150]
|
Panetta K, Gao C, Agaian S. No-reference color image contrast and quality measures. IEEE Transactions on Consumer Electronics, 2013, 59(3): 643-651
|
[151]
|
Gu K, Zhai G T, Yang X K, Zhang W J. Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Transactions on Broadcasting, 2014, 60(3): 555-567
|
[152]
|
Gao X B, Gao F, Tao D C, Li X L. Universal blind im-age quality assessment metrics via natural scene statistics and multiple kernel learning. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(12): 2013-2026
|
[153]
|
Gu Z Y, Zhang L, Liu X X, Li H Y, Lu J W. Learning quality-aware filters for no-reference image quality assess- ment. In: Proceedings of the 2014 IEEE International Con- ference on Multimedia and Expo. Chengdu, China: IEEE, 2014. 1-6
|