摘要:
最近 Melnik 提出了一种新的排序层分类器融合思想, 指出在分类器融合过程中既要调节对不同分类器的侧重程度, 又要利用不同序号值提供的置信度信息. 但是在 Melnik 提出的融合方法中, 参数数量随着分类器数量的增加呈指数级增长, 在分类器数目增加时会产生维数灾难问题. 在 Melnik 的思想启发下, 本文提出了一种新的融合方法, 该方法将对序号的变换与分类器的加权组合协调起来, 能够更好地实现 Melnik 提出的目标. 另外, 本文给出了一种用连续可微函数表示的分类错误率表达式, 设计了基于梯度下降的参数调节方法. 在实验中本文设计了融合掌纹图像数据和手指图像数据的多模态身份识别系统, 观察了不同数目分类器条件下的融合效果. 实验结果表明本文方法的分类正确率高于传统方法和 Melnik 的方法.
Abstract:
Recently, Melnik proposed a new rank level classifier fusion idea, which managed to keep a balance between the preference for the specific classifier and the confidence it had in any specific rank. However, Melnik's classifier fusion method suffers from ``the curse of dimensionality''. The number of parameters increases exponentially with the increase of the number of classifiers. Inspired by Melnik's idea, we propose a new fusion method, which achieves Melnik's objectives through combination of the rank transforming and the weighted classifier integration. Furthermore, a continuously differentiable classification error expression is given. Based on that, a gradient descendent parameter tuning algorithm is designed. We develop a multi-modal identity recognition system by fusion of palmprint and finger image data. Many experiments have been conducted to test the performance of our method under the condition of different classifier numbers. The experimental results show that the performance of our method is better than those of traditional methods and Melnik's method.