2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有时延和切换拓扑的高阶离散时间多智能体系统鲁棒保性能一致性

徐君 张国良 曾静 孙巧 羊帆

徐君, 张国良, 曾静, 孙巧, 羊帆. 具有时延和切换拓扑的高阶离散时间多智能体系统鲁棒保性能一致性. 自动化学报, 2019, 45(2): 360-373. doi: 10.16383/j.aas.2017.c160758
引用本文: 徐君, 张国良, 曾静, 孙巧, 羊帆. 具有时延和切换拓扑的高阶离散时间多智能体系统鲁棒保性能一致性. 自动化学报, 2019, 45(2): 360-373. doi: 10.16383/j.aas.2017.c160758
XU Jun, ZHANG Guo-Liang, ZENG Jing, SUN Qiao, YANG Fan. Robust Guaranteed Cost Consensus for High-order Discrete-time Multi-agent Systems With Switching Topologies and Time Delays. ACTA AUTOMATICA SINICA, 2019, 45(2): 360-373. doi: 10.16383/j.aas.2017.c160758
Citation: XU Jun, ZHANG Guo-Liang, ZENG Jing, SUN Qiao, YANG Fan. Robust Guaranteed Cost Consensus for High-order Discrete-time Multi-agent Systems With Switching Topologies and Time Delays. ACTA AUTOMATICA SINICA, 2019, 45(2): 360-373. doi: 10.16383/j.aas.2017.c160758

具有时延和切换拓扑的高阶离散时间多智能体系统鲁棒保性能一致性

doi: 10.16383/j.aas.2017.c160758
基金项目: 

国家自然科学基金 61203007

国家自然科学基金 61374054

详细信息
    作者简介:

    徐君  火箭军工程大学博士研究生.主要研究方向为多智能体协同导航与控制.E-mail:junxu1021@126.com

    曾静   火箭军工程大学副教授.主要研究方向为机器人技术, 军事运筹学.E-mail:m15091281454@163.com

    孙巧  火箭军工程大学博士研究生.主要研究方向为视觉跟踪与机器学习.E-mail:seq1211@126.com

    羊帆   火箭军工程大学博士研究生, 宝鸡高新技术研究所工程师.主要研究方向为空间机器人建模与控制.E-mail:y_fanfan@yeah.net

    通讯作者:

    张国良  火箭军工程大学教授.主要研究方向为机器人技术, 先进控制理论与应用.本文通信作者.E-mail:zhgl@sohu.com

Robust Guaranteed Cost Consensus for High-order Discrete-time Multi-agent Systems With Switching Topologies and Time Delays

Funds: 

National Natural Science Foundation of China 61203007

National Natural Science Foundation of China 61374054

More Information
    Author Bio:

      Ph. D. candidate at Rocket Force University of Engineering. His research interest covers multi-agent collaborative navigation and control

      Associate professor at Rocket Force University of Engineering. Her research interest covers robot technology, military operation research

      Ph. D. candidate at Rocket Force University of Engineering. His research interest covers visual tracking and machine learning

      Ph. D. candidate at Rocket Force University of Engineering, and engineer of Baoji Institute of High Technology. His research interest covers space robots modeling and control

    Corresponding author: ZHANG Guo-Liang   Professor at Rocket Force University of Engineering. His research interest covers robot technology, advanced control theory and application. Corresponding author of this paper
  • 摘要: 研究存在参数不确定性的高阶离散时间多智能体系统在时延和联合连通切换通信拓扑条件下的鲁棒保性能一致性问题,给出一种线性一致性协议的设计方法.1)引入高阶离散时间不确定多智能体系统的鲁棒保性能一致性问题,定义基于智能体邻居状态误差和控制输入的保性能函数;2)通过构造合适的Lyapunov函数并利用离散时间系统稳定性理论,推导出一个使高阶离散时间不确定多智能体系统在该条件下获得保性能一致性的线性矩阵不等式(Linear matrix inequality,LMI)充分条件,并给出相应的保性能上界;3)以一致性序列的形式给出参数不确定条件下的高阶离散时间多智能体系统的一致性收敛结果;4)数值仿真验证了本文理论的正确性和有效性.
    1)  本文责任编委 夏元清
  • 图  1  多智能体系统(1)的通信拓扑$G$

    Fig.  1  the interaction topology $G$ of multi-agent system (1)

    图  2  状态${{\pmb{x}}}_{i1}$在参数${r_j} (j = 1, 2, 3)$变化前后的状态轨迹

    Fig.  2  Comparison of state trajectories of ${{\pmb{x}}}_{i1}$ before and after parameters ${r_j}~(j = 1, 2, 3)$ change

    图  3  状态${{\pmb{x}}}_{i2}$在参数${r_j}~(j = 1, 2, 3)$变化前后的状态轨迹

    Fig.  3  Comparison of state trajectories of ${{\pmb{x}}}_{i2}$ before and after parameters ${r_j}~(j = 1, 2, 3)$ change

    图  4  状态${{\pmb{x}}}_{i3}$在参数${r_j}~(j = 1, 2, 3)$变化前后的状态轨迹

    Fig.  4  Comparison of state trajectories of ${{\pmb{x}}}_{i3}$ before and after parameters ${r_j}~(j = 1, 2, 3)$ change

    图  5  保性能代价轨迹图

    Fig.  5  Trajectories of cost

    图  6  多智能体系统(1)的通信拓扑切换信号$\sigma (k)$

    Fig.  6  The switching signal $\sigma (k)$ of multi-agent system (1)

  • [1] Godard G, Kumar K D. Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques. Journal of Guidance, Control, and Dynamics, 2010, 33(3):969-984 doi: 10.2514/1.38580
    [2] 耿志勇.基于庞特里亚金极小值原理的多运载体有限时间编队控制.自动化学报, 2017, 43(1):40-59 http://www.aas.net.cn/CN/abstract/abstract18987.shtml

    Geng Zhi-Yong. Finite time formation control for multiple vehicles based on Pontryagin's minimum principle. Acta Automatica Sinica, 2017, 43(1):40-59 http://www.aas.net.cn/CN/abstract/abstract18987.shtml
    [3] Hu Z L, Ma C, Zhang L X, Halme A, Hayat T, Ahmad B. Formation control of impulsive networked autonomous underwater vehicles under fixed and switching topologies. Neurocomputing, 2015, 147(1):291-298 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5fb417084e9221349d2ac99a5e7df214
    [4] Wang R, Dong X W, Li Q D, Ren Z. Distributed adaptive formation control for linear swarm systems with time-varying formation and switching topologies. IEEE Access, 2016, 4(12):8995-9004 http://ieeexplore.ieee.org/document/7801838/
    [5] Kibangou A Y. Step-size sequence design for finite-time average consensus in secure wireless sensor networks. Systems and Control Letters, 2014, 67:19-23 doi: 10.1016/j.sysconle.2014.01.010
    [6] Hlinka O, Hlawatsch F, Djuric P M. Distributed sequential estimation in asynchronous wireless sensor networks. IEEE Signal Processing Letters, 2015, 22(11):1965-1969 doi: 10.1109/LSP.2015.2448601
    [7] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533 doi: 10.1109/TAC.2004.834113
    [8] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5):655-661 doi: 10.1109/TAC.2005.846556
    [9] 陈世明, 化俞新, 祝振敏, 赖强.邻域交互结构优化的多智能体快速蜂拥控制算法.自动化学报, 2015, 41 (12):2092-2099 http://www.aas.net.cn/CN/abstract/abstract18782.shtml

    Chen Shi-Ming, Hua Yu-Xin, Zhu Zhen-Min, Lai Qiang. Fast flocking algorithm for multi-agent systems by optimizing local interactive topology. Acta Automatica Sinica, 2015, 41(12):2092-2099 http://www.aas.net.cn/CN/abstract/abstract18782.shtml
    [10] Xi J X, Cai N, Zhong Y S. Consensus problems for high-order linear time-invariant swarm systems. Physica A:Statistical Mechanics and Its Applications, 2010, 389(24):5619-5627 doi: 10.1016/j.physa.2010.08.038
    [11] 吴苗苗, 张皓, 严怀成, 陈世明.异步切换多智能体系统的协同输出调节.自动化学报, 2017, 43(5):735-742 http://www.aas.net.cn/CN/abstract/abstract19051.shtml

    Wu Miao-Miao, Zhang Hao, Yan Huai-Cheng, Chen Shi-Ming. Cooperative output regulation for asynchronously switched multi-agent systems. Acta Automatica Sinica, 2017, 43(5):735-742 http://www.aas.net.cn/CN/abstract/abstract19051.shtml
    [12] Zhang G L, Xu J, Zeng J, Xi J X, Tang W J. Consensus of high-order discrete-time linear networked multi-agent systems with switching topology and time delays. Transactions of the Institute of Measurement and Control, 2016, 389(24):1-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0142331216629197
    [13] Su Y F, Huang J. Two consensus problems for discrete-time multi-agent systems with switching network topology. Automatica, 2012, 48(9):1988-1997 doi: 10.1016/j.automatica.2012.03.029
    [14] Cheng Y, Ugrinovskii V. Guaranteed performance leader-follower control for multiagent systems with linear IQC-constrained coupling. In: Proceedings of the 2013 American Control Conference (ACC). Washington DC, USA: ACC, 2013. 2625-2630
    [15] Wang Z, Xi J X, Yao Z C, Liu G B. Guaranteed cost consensus for multi-agent systems with fixed topologies. Asian Journal of Control, 2015, 17(2):729-735 doi: 10.1002/asjc.v17.2
    [16] Wang Z, Xi J, Yao Z C, Liu G B. Guaranteed cost consensus problems for second-order multi-agent systems. In: Proceedings of the 33rd Chinese Control Conference (CCC). Nanjing, China: IEEE, 2014.
    [17] Guan Z H, Hu B, Chi M, He D X, Cheng X M. Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control. Automatica, 2014, 50(9):2415-2418 doi: 10.1016/j.automatica.2014.07.008
    [18] 徐君, 张国良, 曾静, 汤文俊, 黄鑫.离散时间高阶不确定线性多个体系统保性能一致性分析.控制理论与应用, 2016, 33(6):841-848 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201606017

    Xu Jun, Zhang Guo-Liang, Zeng Jing, Tang Wen-Jun, Huang Xin. Guaranteed cost consensus analyses of discrete-time high-order uncertain linear multi-agent systems. Control Theory and Applications, 2016, 33(6):841-848 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201606017
    [19] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9):1465-1476 doi: 10.1109/TAC.2004.834433
    [20] Wu M, He Y, She J H, Liu G P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004, 40(8):1435-1439 doi: 10.1016/j.automatica.2004.03.004
    [21] Wang Y Y, Xie L H, de Souza C E. Robust control of a class of uncertain nonlinear systems. Systems and Control Letters, 1992, 19(2):139-149 doi: 10.1016/0167-6911(92)90097-C
    [22] Ghaoui L, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Studies in Applied and Numerical Mathematics. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
    [23] Boyd S, El Ghaoui L, Oustry F, AitRami M. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 1997, 42(8):1171-1176 doi: 10.1109/9.618250
    [24] Kim H, Shim H, Seo J H. Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Transactions on Automatic Control, 2011, 56(1):200-206 doi: 10.1109/TAC.2010.2088710
  • 加载中
图(6)
计量
  • 文章访问数:  2787
  • HTML全文浏览量:  1318
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-07
  • 录用日期:  2017-03-21
  • 刊出日期:  2019-02-20

目录

    /

    返回文章
    返回