2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相关滤波器的视频跟踪方法研究进展

刘巧元 王玉茹 张金玲 殷明浩

刘巧元, 王玉茹, 张金玲, 殷明浩. 基于相关滤波器的视频跟踪方法研究进展. 自动化学报, 2019, 45(2): 265-275. doi: 10.16383/j.aas.2018.c170394
引用本文: 刘巧元, 王玉茹, 张金玲, 殷明浩. 基于相关滤波器的视频跟踪方法研究进展. 自动化学报, 2019, 45(2): 265-275. doi: 10.16383/j.aas.2018.c170394
LIU Qiao-Yuan, WANG Yu-Ru, ZHANG Jin-Ling, YIN Ming-Hao. Research Progress of Visual Tracking Methods Based on Correlation Filter. ACTA AUTOMATICA SINICA, 2019, 45(2): 265-275. doi: 10.16383/j.aas.2018.c170394
Citation: LIU Qiao-Yuan, WANG Yu-Ru, ZHANG Jin-Ling, YIN Ming-Hao. Research Progress of Visual Tracking Methods Based on Correlation Filter. ACTA AUTOMATICA SINICA, 2019, 45(2): 265-275. doi: 10.16383/j.aas.2018.c170394

基于相关滤波器的视频跟踪方法研究进展

doi: 10.16383/j.aas.2018.c170394
基金项目: 

教育部符号计算与知识工程重点实验室开放基金 93K172016K14

国家自然科学基金 61300099

中央高校基础科研业务费 2412017FZ027

吉林省科技厅科技发展计划 20170101144JC

中国博士后科学基金 2015M570261

详细信息
    作者简介:

    刘巧元 东北师范大学博士研究生. 2014和2016年获得东北大学学士学位和硕士学位.主要研究方向为视频目标跟踪, 模式识别.E-mail: liuqy558@nenu.edu.cn

    张金玲  东北师范大学硕士研究生.2016年获得东北师范大学学士学位.主要研究方向为计算机视觉, 模式识别.E-mail:zhangjl575@nenu.edu.cn

    殷明浩  东北师范大学教授.2008年获得吉林大学博士学位.主要研究方向为自动规划, 自动推理, 语义网和近似推理.E-mail:ymh@nenu.edu.cn

    通讯作者:

    王玉茹  东北师范大学副教授. 2010年获得哈尔滨工业大学博士学位.主要研究方向为计算机视觉, 模式识别.本文通信作者.E-mail: wangyr915@nenu.edu.cn

Research Progress of Visual Tracking Methods Based on Correlation Filter

Funds: 

Open Fund of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education 93K172016K14

National Natural Science Foundation of China 61300099

Fundamental Research Funds for Central Universities 2412017FZ027

Science and Technology Development Plan of Jilin Province 20170101144JC

China Postdoctoral Science Foundation Funded Project 2015M570261

More Information
    Author Bio:

     Ph. D. candidate at Northeast Normal University. She received her bachelor and master degrees from Northeast University in 2014 and 2016, respectively. Her research interest covers visual tracking and pattern recognition

     Master student at Northeast Normal University. She received her bachelor degree from Northeast Normal University in 2016. Her research interest covers computer vision and pattern recognition

     Professor at Northeast Normal University. He received his Ph. D. degree from Jilin University in 2008. His research interest covers automated planning, automated reasoning, semantic web, and approximate reasoning

    Corresponding author: WANG Yu-Ru  Associate professor at Northeast Normal University. She received her Ph. D. degree from Harbin Institute of Technology in 2010. Her research interest covers computer vision and pattern recognition. Corresponding author of this paper
  • 摘要: 视频跟踪是计算机视觉的重要组成部分,可在智能交通、医疗诊断等实际应用中发挥重要作用.近年来,相关滤波器凭借精度高、速度快的优势,逐步发展为视频跟踪方法的主要研究方向之一,可以很好地处理多种视频跟踪难题.随着基于相关滤波器的视频跟踪系列方法被相继提出,算法设计趋于完善,跟踪效果也趋于精准.本文从不同角度总结了多种具有代表性的相关滤波跟踪方法,分析了各种方法的发展进程,并预测了未来可能的发展方向.
    1)  本文责任编委 赖剑煌
  • 图  1  循环采样示意图

    Fig.  1  Sketch map of circular sampling

    图  2  加入惩罚正则项前后相关滤波系数对比示意图

    Fig.  2  Schematic diagram of correlation filtering coefficients before and after adding penalty regular

    图  3  各种基于相关滤波跟踪方法成功率对比曲线图

    Fig.  3  Various success ratio comparison curve based on correlation filter tracking methods

    图  4  各种基于相关滤波跟踪方法的EAO等级图

    Fig.  4  Various EAO level maps based on correlation filtering tracking methods

  • [1] 张铁, 马琼雄.人机交互中的人体目标跟踪算法.上海交通大学学报, 2015, 49(8):1213-1219 http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201508021

    Zhang Tie, Ma Qiong-Xiong. Human object tracking algorithm for human-robot interaction. Journal of Shanghai Jiao Tong University, 2015, 49(8):1213-1219 http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201508021
    [2] Pantrigo J J, Hernández J, Sánchez A. Multiple and variable target visual tracking for video-surveillance applications. Pattern Recognition Letters, 2010, 31(12):1577-1590 doi: 10.1016/j.patrec.2010.04.017
    [3] 权义萍, 杨道业.基于视频检测的卡尔曼滤波车辆跟踪算法及行为分析.北京工业大学学报, 2014, 40(7):1110-1113 http://d.old.wanfangdata.com.cn/Periodical/bjgydxxb201407026

    Quan Yi-Ping, Yang Dao-Ye. Kalman filter vehicle tracking algorithm and behaviour analysis based on video detection. Journal of Beijing University of Technology, 2014, 40(7):1110-1113 http://d.old.wanfangdata.com.cn/Periodical/bjgydxxb201407026
    [4] Yang G, Zhao J S, Zheng C H, Fan Y. An approach based on mean shift and background difference for moving object tracking. In: Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing. Chengdu, China: IEEE, 2010. 1-4 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5600705
    [5] Horn B K P, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17(1-3):185-203 doi: 10.1016/0004-3702(81)90024-2
    [6] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 4293-4302 http://ieeexplore.ieee.org/document/7780834/
    [7] Bertinetto L, Valmadre J, Henriques J F, Vedaldi A, Torr P H S. Fully-convolutional siamese networks for object tracking. In: Proceedings of the 2016 European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016. 850-865 doi: 10.1007/978-3-319-48881-3_56
    [8] Wang L J, Ouyang W L, Wang X G, Lu H C. STCT: sequentially training convolutional networks for visual tracking. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 1373-1381
    [9] Danelljan M, Bhat G, Khan F S, Felsberg M. ECO: efficient convolution operators for tracking. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017. 6931-6939
    [10] Hong Z B, Chen Z, Wang C H, Mei X, Prokhorov D, Tao D C. MUlti-store tracker (MUSTer): a cognitive psychology inspired approach to object tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 749-758 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7298675
    [11] Valmadre J, Bertinetto L, Henriques J, Vedaldi A, Torr P H S. End-to-end representation learning for correlation filter based tracking. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017. 5000-5008 http://www.researchgate.net/publication/320971954_End-to-End_Representation_Learning_for_Correlation_Filter_Based_Tracking
    [12] Zhang J M, Ma S G, Sclaroff S. MEEM: robust tracking via multiple experts using entropy minimization. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 188-203 doi: 10.1007/978-3-319-10599-4_13
    [13] Possegger H, Mauthner T, Bischof H. In defense of color-based model-free tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2113-2120
    [14] Adankon M M, Cheriet M. Support vector machine. Computer Science, 2002, 1(4):1-28 http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201705012
    [15] Bolme D S, Beveridge J R, Draper B A, Lui Y M. Visual object tracking using adaptive correlation filters. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 2544-2550 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5539960
    [16] Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012. 702-715
    [17] Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3):583-596 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8f7e9e032e4e419c5c79d7a5f1f6494
    [18] Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adaptive color attributes for real-time visual tracking. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1090-1097 http://ieeexplore.ieee.org/document/6909539/
    [19] Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr P H S. Staple: complementary learners for real-time tracking. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 1401-1409
    [20] Danelljan M, Häger G, Khan F, Felsberg M. Accurate scale estimation for robust visual tracking. In: Proceedings of the 2014 British Machine Vision Conference. Michel, Canada: BMVA Press, 2014. 1-65
    [21] Danelljan M, Häger G, Khan F S, Felsberg M. Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8):1561-1575 doi: 10.1109/TPAMI.2016.2609928
    [22] Zhang M D, Xing J L, Gao J, Hu W M. Robust visual tracking using joint scale-spatial correlation filters. In: Proceedings of the 2015 IEEE International Conference on Image Processing. Quebec City, QC, Canada: IEEE, 2015. 1468-1472
    [23] Zhang M D, Xing J L, Gao J, Shi X C, Wang Q, Hu W M. Joint scale-spatial correlation tracking with adaptive rotation estimation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Santiago, Chile: IEEE, 2015. 595-603 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7406430
    [24] Ma C, Yang X K, Zhang C Y, Yang M H. Long-term correlation tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 5388-5396
    [25] Danelljan M, Häger G, Khan F S, Felsberg M. Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 4310-4318
    [26] Danelljan M, Häger G, Khan F S, Felsberg M. Convolutional features for correlation filter based visual tracking. In: Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Santiago, Chile: IEEE, 2015. 621-629
    [27] Wang Q, Gao J, Xing J L, Zhang M D, Hu W M. DCFNet: discriminant correlation filters network for visual tracking. arXiv: 1704.04057. 2017.
    [28] Danelljan M, Häger G, Khan F S, Felsberg M. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking. In: Proceedings of the 2016 IEEE Conference on Computer Vision and pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 1430-1438
    [29] Danelljan M, Robinson A, Khan F S, Felsberg M. Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Proceedings of the 14th Computer Vision. Amsterdam, Netherlands: Springer, 2016. 472-488
    [30] Yi W, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013. 2411-2418
    [31] Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Ćuehovin L, et al. The visual object tracking vot2016 challenge results. In: Proceedings of the 2016 European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016. 777-823
    [32] Nam H, Baek M, Han B. Modeling and propagating CNNs in a tree structure for visual tracking. arXiv: 1608.07242. 2016.
  • 加载中
图(4)
计量
  • 文章访问数:  2470
  • HTML全文浏览量:  538
  • PDF下载量:  1270
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-19
  • 录用日期:  2017-12-23
  • 刊出日期:  2019-02-20

目录

    /

    返回文章
    返回