2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机非线性系统基于事件触发机制的自适应神经网络控制

王桐 邱剑彬 高会军

王桐, 邱剑彬, 高会军. 随机非线性系统基于事件触发机制的自适应神经网络控制. 自动化学报, 2019, 45(1): 226-233. doi: 10.16383/j.aas.2018.c180404
引用本文: 王桐, 邱剑彬, 高会军. 随机非线性系统基于事件触发机制的自适应神经网络控制. 自动化学报, 2019, 45(1): 226-233. doi: 10.16383/j.aas.2018.c180404
WANG Tong, QIU Jian-Bin, GAO Hui-Jun. Event-triggered Adaptive Neural Network Control for a Class of Stochastic Nonlinear Systems. ACTA AUTOMATICA SINICA, 2019, 45(1): 226-233. doi: 10.16383/j.aas.2018.c180404
Citation: WANG Tong, QIU Jian-Bin, GAO Hui-Jun. Event-triggered Adaptive Neural Network Control for a Class of Stochastic Nonlinear Systems. ACTA AUTOMATICA SINICA, 2019, 45(1): 226-233. doi: 10.16383/j.aas.2018.c180404

随机非线性系统基于事件触发机制的自适应神经网络控制

doi: 10.16383/j.aas.2018.c180404
基金项目: 

黑龙江省青年科学基金 QC2018077

博士后创新人才支持计划 BX201700067

国家自然科学基金 61873311

中国博士后科学基金面上项目 2018M630359

国家自然科学基金 61803122

高等学校学科创新引智计划项目 B16014

详细信息
    作者简介:

    王桐  哈尔滨工业大学讲师.主要研究方向为非线性系统的自适应控制.E-mail:twang@hit.edu.cn

    邱剑彬  哈尔滨工业大学教授.主要研究方向为非线性系统的模糊控制.E-mail:jbqiu@hit.edu.cn

    通讯作者:

    高会军   哈尔滨工业大学教授.主要研究方向为网络化控制.本文通信作者.E-mail:hjgao@hit.edu.cn

Event-triggered Adaptive Neural Network Control for a Class of Stochastic Nonlinear Systems

Funds: 

Heilongjiang Province Science Foundation for Youths QC2018077

National Postdoctoral Program for Innovative Talents BX201700067

National Natural Science Foundation of China 61873311

China Postdoctoral Science Foundation Grant 2018M630359

National Natural Science Foundation of China 61803122

the 111 Project B16014

More Information
    Author Bio:

       Lecturer at Harbin Institute of Technology. His main research interest is adaptive control for nonlinear systems

       Professor at Harbin Institute of Technology. His main research interest is fuzzy control for nonlinear systems

    Corresponding author: GAO Hui-Jun    Professor at Harbin Institute of Technology. His research interest covers networked control systems. Corresponding author of this paper
  • 摘要: 针对一类具有严格反馈结构且控制方向未知的随机非线性系统,提出了基于事件触发机制的自适应神经网络(Adaptive neural network,ANN)输出反馈控制方法.利用径向基神经网络逼近系统中未知的非线性函数.通过引入Nussbaum增益函数并设计滤波器,解决了系统控制方向未知的问题.通过设计具有相对阈值的事件触发机制,保证了闭环随机非线性系统的有界性.最后给出数值仿真例子验证所提控制方法的有效性.
    1)  本文责任编委 鲁仁全
  • 图  1  系统的跟踪和观测性能

    Fig.  1  Output tracking and observation performance

    图  2  控制信号

    Fig.  2  Control signals

  • [1] Polycarpou M M, Mears M J. Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators. International Journal of Control, 1998, 70(3):363-384 doi: 10.1080/002071798222280
    [2] Krstic M, Kanellakopoulos I, Kokotovic P V. Adaptive nonlinear control without overparametrization. Systems & Control Letters, 1992, 19(3):177-185 http://d.old.wanfangdata.com.cn/Periodical/kzyjc200004006
    [3] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controller for feedback linearizable systems. IEEE Transactions on Automatic Control, 1991, 36:1241-1253 doi: 10.1109/9.100933
    [4] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. New York:Wiley, 1995
    [5] Zhang Y, Peng P Y, Jiang Z P. Stable neural controller design for unknown nonlinear systems using backstepping. IEEE Transactions on Neural Networks, 2000, 11(6):1347-1360 doi: 10.1109/72.883443
    [6] Chen B, Liu X, Liu K, Lin C. Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica, 2009, 45(6):1554-1560 doi: 10.1016/j.automatica.2009.02.021
    [7] Li T S, Wang D, Feng G, Tong S C. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(3):915-927 doi: 10.1109/TSMCB.2009.2033563
    [8] Wang M, Liu X, Shi P. Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(6):1681-1692 doi: 10.1109/TSMCB.2011.2159111
    [9] Sun W, Gao H, Kaynak O. Adaptive backstepping control for active suspension systems with hard constraints. IEEE/ASME Transactions on Mechatronics, 2013, 18(3):1072-1079 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c789a5e2dce51b1b01a17ffeba1e3319
    [10] Deng H, Krstic M. Output-feedback stochastic nonlinear stabilization. IEEE Transactions on Automatic Control, 1999, 44(2):328-333 doi: 10.1109/9.746260
    [11] Liu S J, Zhang J F, Jiang Z P. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica, 2007, 43(2):238-251 doi: 10.1016/j.automatica.2006.08.028
    [12] Wu Z J, Xie X J, Zhang S Y. Adaptive backstepping controller design using stochastic small-gain theorem. Automatica, 2007, 43(4):608-620 doi: 10.1016/j.automatica.2006.10.020
    [13] Chen W, Jiao L, Li J, Li R. Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(3):939-950 doi: 10.1109/TSMCB.2009.2033808
    [14] Li J, Chen W, Li J M. Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems. International Journal of Robust and Nonlinear Control, 2011, 21(4):452-472 doi: 10.1002/rnc.v21.4
    [15] Tallapragada P, Chopra N. On event triggered tracking for nonlinear systems. IEEE Transactions on Automatic Control, 2013, 58(9):2343-2348 doi: 10.1109/TAC.2013.2251794
    [16] Liu T, Jiang Z P. A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(8):2072-2085 doi: 10.1109/TAC.2015.2396645
    [17] Abdelrahim M, Postoyan R, Daafouz J, Dragan Nesic. Stabilization of nonlinear systems using event-triggered output feedback controllers. IEEE Transactions on Automatic Control, 2016, 61(9):2682-2687 doi: 10.1109/TAC.2015.2502145
    [18] Li H, Chen Z, Wu L, Lam H K. Event-triggered control for nonlinear systems under unreliable communication links. IEEE Transactions on Fuzzy Systems, 2017, 25(4):813-824 doi: 10.1109/TFUZZ.2016.2578346
    [19] Ding D, Wang Z, Shen B, Wei G. Event-triggered consensus control for discrete-time stochastic multi-agent systems:the input-to-state stability in probability. Automatica, 2015, 62:284-291 doi: 10.1016/j.automatica.2015.09.037
    [20] Ma L, Wang Z, Lam H K. Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations. IEEE Transactions on Automatic Control, 2017, 62(7):3524-3531 doi: 10.1109/TAC.2016.2614486
    [21] Wu L, Gao Y, Liu J, Li H. Event-triggered sliding mode control of stochastic systems via output feedback. Automatica, 2017, 82:79-92 doi: 10.1016/j.automatica.2017.04.032
    [22] Dong H, Wang Z, Shen B, Ding D. Variance-constrained H control for a class of nonlinear stochastic discrete time-varying systems:the event-triggered design. Automatica, 2016, 72:28-36 doi: 10.1016/j.automatica.2016.05.012
    [23] Yu Z, Li S. Neural-network-based output-feedback adaptive dynamic surface control for a class of stochastic nonlinear time-delay systems with unknown control directions. Neurocomputing, 2014, 129:540-547 doi: 10.1016/j.neucom.2013.09.005
  • 加载中
图(2)
计量
  • 文章访问数:  3540
  • HTML全文浏览量:  420
  • PDF下载量:  1222
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-08
  • 录用日期:  2018-08-27
  • 刊出日期:  2019-01-20

目录

    /

    返回文章
    返回