2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拒绝服务攻击下基于UKF的智能电网动态状态估计研究

李雪 李雯婷 杜大军 孙庆 费敏锐

李雪, 李雯婷, 杜大军, 孙庆, 费敏锐. 拒绝服务攻击下基于UKF的智能电网动态状态估计研究. 自动化学报, 2019, 45(1): 120-131. doi: 10.16383/j.aas.2018.c180431
引用本文: 李雪, 李雯婷, 杜大军, 孙庆, 费敏锐. 拒绝服务攻击下基于UKF的智能电网动态状态估计研究. 自动化学报, 2019, 45(1): 120-131. doi: 10.16383/j.aas.2018.c180431
LI Xue, LI Wen-Ting, DU Da-Jun, SUN Qing, FEI Min-Rui. Dynamic State Estimation of Smart Grid Based on UKF Under Denial of Service Attacks. ACTA AUTOMATICA SINICA, 2019, 45(1): 120-131. doi: 10.16383/j.aas.2018.c180431
Citation: LI Xue, LI Wen-Ting, DU Da-Jun, SUN Qing, FEI Min-Rui. Dynamic State Estimation of Smart Grid Based on UKF Under Denial of Service Attacks. ACTA AUTOMATICA SINICA, 2019, 45(1): 120-131. doi: 10.16383/j.aas.2018.c180431

拒绝服务攻击下基于UKF的智能电网动态状态估计研究

doi: 10.16383/j.aas.2018.c180431
基金项目: 

国家自然科学基金 61803252

国家自然科学基金 61773253

国家自然科学基金 61633016

中国博士后科学基金 2018M630425

国家自然科学基金 61633016

详细信息
    作者简介:

    李雪 上海大学机电工程与自动化学院副教授.主要研究方向为智能电网安全控制与性能评估.E-mail:lixue@shu.edu.cn

    李雯婷 上海大学机电工程与自动化学院硕士研究生.主要研究方向为网络攻击下智能电网状态估计及性能分析.E-mail:lwting@shu.edu.cn

    孙庆 上海大学机电工程与自动化学院博士后.主要研究方向为混杂系统的状态估计及其应用.E-mail:qingsun@shu.edu.cn

    费敏锐 上海大学机电工程与自动化学院教授.主要研究方向为网络化控制系统及实现.E-mail:mrfei@staff.shu.edu.cn

    通讯作者:

    杜大军 上海大学机电工程与自动化学院教授.主要研究方向为机器视觉和网络化系统安全控制.本文通信作者.E-mail:ddj@shu.edu.cn

Dynamic State Estimation of Smart Grid Based on UKF Under Denial of Service Attacks

Funds: 

Supported by National Natural Science Foundation of China 61803252

Supported by National Natural Science Foundation of China 61773253

Supported by National Natural Science Foundation of China 61633016

China Postdoctoral Science Foundation 2018M630425

Supported by National Natural Science Foundation of China 61633016

More Information
    Author Bio:

    Associate professor at the School of Mechatronics Engineering and Automation, Shanghai University. Her research interest covers security control and performance assessment of smart grid

    Master student at the School of Mechatronics Engineering and Automation, Shanghai University. Her research interest covers state estimation and performance analysis of smart grid under cyber attacks

    Postdoctor at the School of Mechatronics Engineering and Automation, Shanghai University. Her research interest covers state estimation for the hybrid dynamic systems and its application

    Professor at theSchool of Mechatronics Engineering and Automation, Shanghai University. His research interest covers networked control system and its implementation

    Corresponding author: DU Da-Jun Professor at the School of Mechatronics Engineering and Automation, Shanghai University. His research interest covers machine vision and security control for networked control systems. Corresponding author of this paper
  • 摘要: 针对连续拒绝服务(Denial of service,DoS)攻击导致量测数据丢失使得动态状态估计失效、进而破坏智能电网安全经济运行问题,本文提出了一种适用拒绝服务攻击的改进无迹卡尔曼滤波(Unscented Kalman filter,UKF)方法,以进行智能电网动态状态估计.首先,分析拒绝服务攻击引起数据丢包特性并设计了数据补偿策略,以重构电力系统动态模型;然后,结合Holt's双参数指数平滑和无迹卡尔曼滤波方法,构造了融合补偿信息的新状态估计方程,并进一步基于估计误差协方差矩阵推导了状态增益更新方法,从而得到了无迹卡尔曼滤波动态状态估计新方法.最后,针对IEEE 30和118节点系统进行仿真,验证了所提方法的可行性和有效性.
    1)  本文责任编委 吴立刚
  • 图  1  拒绝服务攻击下基于改进UKF动态状态估计流程图

    Fig.  1  Flowchat of new-UKF dynamic state estimation algorithm under DoS attacks

    图  2  IEEE30节点系统结构图

    Fig.  2  IEEE 30-bus system diagram

    图  3  IEEE30节点系统丢包时序图$(\rho=0.05)$

    Fig.  3  Data packet loss sequence of IEEE 30-bus system $(\rho=0.05)$

    图  4  DoS攻击下节点2的电压幅值和相角的估计值$\left( \rho = 0.05 \right)$

    Fig.  4  Estimated voltage magnitude and phase angle at bus 2 under DoS attacks $\left( \rho = 0.05 \right)$

    图  5  DoS攻击下系统状态估计误差和性能指标$\left( \rho = 0.05 \right)$

    Fig.  5  State estimation error and performance index of the system under DoS attacks $\left( \rho = 0.05 \right)$

    图  6  在DoS攻击下节点2的电压幅值和相角估计值$\left( \rho = 0.1 \right)$

    Fig.  6  Estimated voltage magnitude and phase angle at bus 2 under DoS attacks $\left( \rho = 0.1 \right)$

    图  7  DoS攻击下系统状态估计误差和性能指标$\left( \rho = 0.1 \right)$

    Fig.  7  State estimation error and performance index of the system under DoS attacks $\left( \rho = 0.1 \right)$

    图  8  DoS攻击导致4种不同数据丢包概率下IEEE 30节点系统的状态估计误差和性能指标

    Fig.  8  State estimation error and performance index of IEEE30-bus system with four different $\rho$ values

    图  9  DoS攻击下IEEE 30节点系统采用改进UKF算法和传统UKF算法状态估计误差和性能指标比较$\left( \rho = 0.05 \right)$

    Fig.  9  Comparison of state estimation error and performance index of IEEE 30-bus system by using new-UKF and UKF methods under DoS attacks $\left( \rho = 0.05 \right)$

    图  10  DoS攻击导致4种不同数据丢包概率下IEEE 30节点系统采用改进UKF算法和文献[22] UKF算法状态估计误差和性能指标比较

    Fig.  10  Comparison of state estimation error and performance index of IEEE 30-bus system with four different $\rho$ values by using new-UKF and review [22]$'$s UKF methods under DoS attacks

    图  11  DoS攻击导致4种不同数据丢包概率下IEEE 118节点系统的状态估计误差和性能指标

    Fig.  11  State estimation error and performance index of IEEE118-bus system with four different $\rho$ values

    图  12  DoS攻击下IEEE 118节点系统采用改进UKF算法和传统UKF算法状态估计误差和性能指标比较$\left( \rho = 0.05 \right)$

    Fig.  12  Comparison of state estimation error and performance index of IEEE 118-bus system by using new-UKF and UKF methods under DoS attacks $\left( \rho = 0.05 \right)$

    图  13  DoS攻击导致4种不同数据丢包概率下IEEE 118节点系统采用改进UKF算法和文献[22] UKF算法状态估计误差和性能指标比较

    Fig.  13  Comparison of state estimation error and performance index of IEEE 118-bus system with four different $\rho$ values by using new-UKF and review [22]$'$s UKF methods under DoS attacks

    表  1  网络数据包传递表

    Table  1  Data packet transmission in network

    $k$ ${\lambda _k(1)}$ ${\lambda _k(2)}$ ${\lambda _k(3)}$ ${\phi _k}$ ${\tau _k}$ ${k - {\tau _k} + 1}$ ${\bar z_k}$
    1 1 0 1 1 ${z_1}$
    2 1 0 1 2 ${z_2}$
    3 0 1 1 2 2 ${z_2}$
    4 0 0 1 2 3 2 ${z_2}$
    5 1 0 1 5 ${z_5}$
    6 0 1 1 2 5 ${z_5}$
    7 1 0 1 7 ${z_7}$
    8 0 1 1 2 7 ${z_7}$
    9 1 0 1 9 ${z_9}$
    10 1 0 1 10 ${z_{10}}$
    下载: 导出CSV

    表  2  IEEE 30节点系统动态状态估计结果

    Table  2  Dynamic state estimation results of IEEE 30-bus system

    k 25 50 75 100 状态真值
    ${x_2}$ -0.1314 -0.1322 -0.1312 -0.1312 -0.1311
    ${x_4}$ -0.2497 -0.2495 -0.2493 -0.2505 -0.2481
    ${x_6}$ -0.2259 -0.2261 -0.2256 -0.2252 -0.2249
    ${x_8}$ -0.2450 -0.2456 -0.2456 -0.2463 -0.2460
    ${x_{10}}$ -0.2443 -0.2462 -0.2443 -0.2473 -0.2460
    ${x_{12}}$ -0.2636 -0.2627 -0.2625 -0.2655 -0.2656
    ${x_{14}}$ -0.2800 -0.2816 -0.2807 -0.2791 -0.2809
    ${x_{16}}$ -0.2776 -0.2792 -0.2783 -0.2807 -0.2780
    ${x_{18}}$ -0.2935 -0.2941 -0.2923 -0.2937 -0.2940
    ${x_{20}}$ -0.2822 -0.2859 -0.2842 -0.2841 -0.2842
    ${x_{22}}$ -0.2826 -0.2863 -0.2847 -0.2837 -0.2844
    ${x_{24}}$ -0.2838 -0.2788 -0.2842 -0.2824 -0.2815
    ${x_{26}}$ -0.2739 -0.2715 -0.2746 -0.2708 -0.2741
    ${x_{28}}$ -0.2929 -0.2898 -0.2966 -0.2923 -0.2963
    ${x_{30}}$ 1.0606 1.0603 1.0599 1.0595 1.0600
    ${x_{32}}$ 1.0127 1.0150 1.0119 1.0132 1.0135
    ${x_{34}}$ 0.9986 1.0012 1.0015 0.9973 1.0000
    ${x_{36}}$ 0.9906 0.9935 0.9925 0.9900 0.9924
    ${x_{38}}$ 1.0299 1.0327 1.0280 1.0309 1.0305
    ${x_{40}}$ 1.0711 1.0718 1.0690 1.0747 1.0720
    ${x_{42}}$ 1.0734 1.0743 1.0687 1.0718 1.0710
    ${x_{44}}$ 1.0202 1.0214 1.0184 1.0208 1.0194
    ${x_{46}}$ 1.0085 1.0140 1.0085 1.0136 1.0116
    ${x_{48}}$ 0.9994 1.0019 0.9952 1.0031 0.9996
    ${x_{50}}$ 1.0000 1.0020 0.9980 1.0005 1.0008
    ${x_{52}}$ 1.0005 1.0025 0.9985 1.0013 1.0012
    ${x_{54}}$ 0.9955 0.9961 0.9926 0.9919 0.9945
    ${x_{56}}$ 1.0058 1.0086 1.0052 1.0037 1.0053
    ${x_{58}}$ 0.9863 0.9889 0.9860 0.9845 0.9851
    下载: 导出CSV
  • [1] Rehmani M H, Reisslein M, Rachedi A, Kantarci M E, Radenkovic M. Integrating renewable energy resources into the smart grid:recent developments in information and communication technologies.IEEE Transactions on Industrial Informatics, 2018, 14(7):2814-2825 doi: 10.1109/TII.2018.2819169
    [2] Tuballa M L, Abundo M L.A review of the development of smart grid technologies.Renewable & Sustainable Energy Reviews, 2016, 59:710-725 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_331e96e3ebac763a2f54c4b4d5dbde1d
    [3] Li X, Tian Y C, Ledwitch G, Mishra Y, Han X Q, Zhou C J. Constrained optimization of multicast routing for wide area control of smart grid.IEEE Transactions on Smart Grid, 2018, DOI: 10.1109/TSG.2018.2835487
    [4] Chakrabortty A, Bose A.Smart grid simulations and their supporting implementation methods.Proceedings of the IEEE, 2017, 105(11):2220-2243 doi: 10.1109/JPROC.2017.2737635
    [5] 孙秋野, 滕菲, 张化光.能源互联网及其关键控制问题.自动化学报, 2017, 43(2):176-194 http://www.aas.net.cn/CN/abstract/abstract18999.shtml

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang.Energy internet and its key control issues.Acta Automatica Sinica, 2017, 43(2):176-194 http://www.aas.net.cn/CN/abstract/abstract18999.shtml
    [6] Uzunoglu B, Ulker M A.Maximum likelihood ensemble filter state estimation for power systems.IEEE Transactions on Instrumentation & Measurement, 2018, 67(9):2097-2106 http://www.researchgate.net/publication/322831414_Maximum_Likelihood_Ensemble_Filter_State_Estimation_for_Power_Systems
    [7] Ghosal M, Rao V.Fusion of multirate measurements for nonlinear dynamic state estimation of the power systems.IEEE Transactions on Smart Grid, 2019, 10(1):216-226 doi: 10.1109/TSG.2017.2737359
    [8] Hu L, Wang Z, Rahman I, Liu X.A constrained optimization approach to dynamic state estimation for power systems Including PMU and missing measurements.IEEE Transactions on Control Systems Technology, 2016, 24(2):703-710 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e316d5660c775529020e69097f0fe4f
    [9] Yan H, Zhou X, Zhang H, Yang F, Wu Z G.A novel sliding mode estimation for microgrid control with communication time delays. IEEE Transactions on Smart Grid, 2017, DOI: 10.1109/TSG.2017.2771493
    [10] Zhao J, Netto M, Mili L.A robust iterated extended Kalman filter for power system dynamic state estimation.IEEE Transactions on Power Systems, 2017, 32(4):3205-3216 doi: 10.1109/TPWRS.2016.2628344
    [11] Julier S J, Uhlmann J K, Durrant-Whyte H F.A new approach for filtering nonlinear systems.In:Proceedings of the American Control Conference.Seattle, WA, USA:IEEE, 1995.1628-1632 http://www.researchgate.net/publication/3650755_A_new_approach_for_filtering_nonlinear_systems
    [12] Zhao J, Mili L.Robust unscented Kalman filter for power system dynamic state estimation with unknown noise statistics.IEEE Transactions on Smart Grid, 2017, DOI: 10.1109/TSG.2017.2761452
    [13] Zhao J.Power system dynamic state estimation considering measurement correlations.IEEE Transactions on Energy Conversion, 2017, 32(4):1630-1632 doi: 10.1109/TEC.2017.2742405
    [14] Qi J, Sun K, Wang J, Liu H.Dynamic state estimation for multi-machine power system by unscented Kalman filter with enhanced numerical stability.IEEE Transactions on Smart Grid, 2018, 9(2):1184-1196 doi: 10.1109/TSG.2016.2580584
    [15] Liang G, Zhao J, Luo F, Weller S, Dong Z Y.A review of false data injection attacks against modern power systems.IEEE Transactions on Smart Grid, 2016, 8(4):1630-1638 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/000271621707300102
    [16] 梁耀, 冯冬芹, 徐珊珊, 陈思媛, 高梦州.加密传输在工控系统安全中的可行性研究.自动化学报, 2018, 44(3):434-442 http://www.aas.net.cn/CN/abstract/abstract19236.shtml

    Liang Yao, Feng Dong-Qin, Xu Shan-Shan, Chen Si-Yuan, Gao Meng-Zhou. Feasibility analysis of encrypted transmission on security of industrial control systems.Acta Automatica Sinica, 2018, 44(3):434-442 http://www.aas.net.cn/CN/abstract/abstract19236.shtml
    [17] Liang J, Sankar L, Kosut O.Vulnerability analysis and consequences of false data Injection attack on power system state estimation. IEEE Transactions on Power Systems, 2016, 31(5):3864-3872 doi: 10.1109/TPWRS.2015.2504950
    [18] Li Z, Shahidehpour M, Aminifar F.Cybersecurity in distributed power systems.Proceedings of the IEEE, 2017, 105(7):1367-1388 doi: 10.1109/JPROC.2017.2687865
    [19] Wolf M, Serpanos D.Safety and security in cyber-physical systems and internet-of-things systems.Proceedings of the IEEE, 2018, 106(1):9-20 doi: 10.1109/JPROC.2017.2781198
    [20] Zhang B, Li Q, Zhang Y, Chen X.The proactive defense of energy internet terminals edge-access using the network topology autoassociation.IEEE Journal on Emerging & Selected Topics in Circuits & Systems, 2017, 7(3):432-446 http://www.researchgate.net/publication/318126671_The_Proactive_Defense_of_Energy_Internet_Terminals_Edge-Access_Using_the_Network_Topology_Autoassociation
    [21] Zhang H, Qi Y, Wu J, Fu L, He L.DoS attack energy management against remote state estimation.IEEE Transactions on Control of Network Systems, 2018, 5(1):383-394 doi: 10.1109/TCNS.2016.2614099
    [22] Li L, Xia Y.Stochastic stability of the unscented Kalman filter with intermittent observations.Automatica, 2012, 48(5):978-981 doi: 10.1016/j.automatica.2012.02.014
    [23] Zhao S, Ma Y, Huang B.Robust FIR state estimation of dynamic processes corrupted by outliers.IEEE Transactions on Industrial Informatics, 2019, 15(1):139-147 doi: 10.1109/TII.2018.2829167
    [24] Zhang H, Cheng P, Shi L, Chen J.Optimal DoS attack scheduling in wireless networked control system.IEEE Transactions on Control Systems Technology, 2016, 24(3):843-852 doi: 10.1109/TCST.2015.2462741
    [25] Befekadu G K, Gupta V, Antsaklis P J.Risk-Sensitive control under Markov modulated denial-of-service (DoS) attack strategies. IEEE Transactions on Automatic Control, 2015, 60(12):3299-3304 doi: 10.1109/TAC.2015.2416926
    [26] 李云, 孙书利, 郝钢.基于Gauss-Hermite逼近的非线性加权观测融合无迹Kalman滤波器.自动化学报, 2018, DOI: 10.16383/j.aas.2018.c170534

    Li Yun, Sun Shu-Li, Hao Gang.Weighted measurement fusion unscented Kalman filter based on Gauss-Hermite approximation for nonlinear systems.Acta Automatica Sinica, 2018, DOI: 10.16383/j.aas.2018.c170534.
    [27] Havangi R.Robust SLAM:SLAM base on H square root unscented Kalman filter.Nonlinear Dynamics, 2016, 83(1-2):767-779 doi: 10.1007/s11071-015-2365-x
    [28] Yu S, Emami K, Fernando T, Iu H H C, Wong K P.State estimation of doubly fed induction generator wind turbine in complex power systems.IEEE Transactions on Power Systems, 2016, 31(6):4935-4944 doi: 10.1109/TPWRS.2015.2507620
    [29] Julier S J.The scaled unscented transformation.In:Proceedings of the American Control Conference.Anchorage, AK, USA:IEEE, 2002. 4555-4559
    [30] Sun Q, Lim C C, Shi P, Liu F.Design and stability of moving horizon estimator for Markov jump linear systems.IEEE Transactions on Automatic Control, 2018, DOI: 10.1109/TAC.2018.2816102
    [31] Guo L, Huang D G, Maximum likelihood principle based adaptive UKF algorithm.International Journal of Signal Processing, 2016, 9(9): 167-175
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  3261
  • HTML全文浏览量:  417
  • PDF下载量:  899
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 录用日期:  2018-09-27
  • 刊出日期:  2019-01-20

目录

    /

    返回文章
    返回