2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前景约束下的抗干扰匹配目标跟踪方法

刘大千 刘万军 费博雯 曲海成

刘大千, 刘万军, 费博雯, 曲海成. 前景约束下的抗干扰匹配目标跟踪方法. 自动化学报, 2018, 44(6): 1138-1152. doi: 10.16383/j.aas.2017.c160475
引用本文: 刘大千, 刘万军, 费博雯, 曲海成. 前景约束下的抗干扰匹配目标跟踪方法. 自动化学报, 2018, 44(6): 1138-1152. doi: 10.16383/j.aas.2017.c160475
LIU Da-Qian, LIU Wan-Jun, FEI Bo-Wen, QU Hai-Cheng. A New Method of Anti-interference Matching Under Foreground Constraint for Target Tracking. ACTA AUTOMATICA SINICA, 2018, 44(6): 1138-1152. doi: 10.16383/j.aas.2017.c160475
Citation: LIU Da-Qian, LIU Wan-Jun, FEI Bo-Wen, QU Hai-Cheng. A New Method of Anti-interference Matching Under Foreground Constraint for Target Tracking. ACTA AUTOMATICA SINICA, 2018, 44(6): 1138-1152. doi: 10.16383/j.aas.2017.c160475

前景约束下的抗干扰匹配目标跟踪方法

doi: 10.16383/j.aas.2017.c160475
基金项目: 

辽宁省科技攻关计划项目 2012216026

国家自然科学基金 61172144

详细信息
    作者简介:

    刘大千  辽宁工程技术大学电子与信息工程学院博士研究生.2016年获得辽宁工程技术大学硕士学位.主要研究方向为图像与视觉信息计算, 目标的检测与跟踪.E-mail:liudaqianlntu@163.com

    费博雯   辽宁工程技术大学工商管理学院博士研究生.2016年获得辽宁工程技术大学硕士学位.主要研究方向为数据挖掘, 模式识别.E-mail:feibowen2098@163.com

    曲海成   辽宁工程技术大学副教授.2016年获得哈尔滨工业大学博士学位.主要研究方向为遥感高性能计算技术.E-mail:quhaicheng@lntu.edu.cn

    通讯作者:

    刘万军   辽宁工程技术大学软件学院教授.1991年获得辽宁工程技术大学硕士学位.主要研究方向为图像与视觉信息计算, 目标的检测与跟踪.本文通信作者.E-mail:liuwanjun@lntu.edu.cn

A New Method of Anti-interference Matching Under Foreground Constraint for Target Tracking

Funds: 

Science and Technology Foundation of Liaoning Province 2012216026

National Natural Science Foundation of China 61172144

More Information
    Author Bio:

     Ph. D. candidate at the School of Electronic and Information Engineering, Liaoning Technical University. He received his master degree from Liaoning Technical University in 2016. His research interest covers image and visual information computing, target detection and tracking

     Ph. D. candidate at the School of Business and Management, Liaoning Technical University. She received her master degree from Liaoning Technical University in 2016. Her research interest covers data mining and pattern recognition

     Associate professor at the School of Software, Liaoning Technical University. He received his Ph. D. degree from Harbin Institute of Technology in 2016. His main research interest is remote sensing high performance computing technology

    Corresponding author: LIU Wan-Jun    Professor at the School of Software, Liaoning Technical University. He received his master degree from Liaoning Technical University in 1991. His research interest covers image and visual information computing, target detection and tracking. Corresponding author of this paper
  • 摘要: 传统模型匹配跟踪方法没有充分考虑目标与所处图像的关系,尤其在复杂背景下,发生遮挡时易丢失目标.针对上述问题,提出一种前景约束下的抗干扰匹配(Anti-interference matching under foreground constraint,AMFC)目标跟踪方法.该方法首先选取图像帧序列前m帧进行跟踪训练,将每帧图像基于颜色特征分割成若干超像素块,利用均值聚类组建簇集合,并通过该集合建立判别外观模型;然后,采用EM(Expectation maximization)模型建立约束性前景区域,通过基于LK(Lucas-Kanade)光流法框架下的模型匹配寻找最佳匹配块.为了避免前景区域中相似物体的干扰,提出一种抗干扰匹配的决策判定算法提高匹配的准确率;最后,为了对目标的描述更加准确,提出一种新的在线模型更新算法,当目标发生严重遮挡时,在特征集中加入适当特征补偿,使得更新的外观模型更为准确.实验结果表明,该算法克服了目标形变、目标旋转移动、光照变化、部分遮挡、复杂环境的影响,具有跟踪准确和适应性强的特点.
    1)  本文责任编委 桑农
  • 图  1  AMFC算法流程示例图

    Fig.  1  The flow diagram of AMFC algorithm

    图  2  建立判别外观模型过程

    Fig.  2  Procedure of establishing discriminant appearance model

    图  3  $\sigma$值与平均中心误差之间的关系

    Fig.  3  The relationship between the $\sigma$ value and average center error

    图  4  加入噪声模型对比结果

    Fig.  4  Comparison results of noise model

    图  5  匹配块位置信息示意图

    Fig.  5  Diagram of matching block location information

    图  6  决策判定的有效性验证

    Fig.  6  The effectiveness verification of decision-making

    图  7  判别外观模型的对比效果

    Fig.  7  The contrast effects of discrimination appearance model

    图  8  11种跟踪算法在12组图像序列中的跟踪结果

    Fig.  8  Tracking results of the 11 algorithms in the 12 image sequences

    表  1  实验图像序列信息

    Table  1  The information of the test image sequences

    图像序列光照变化遮挡形变复杂背景旋转
    Girl $\surd$$\surd$
    Deer $\surd$ $\surd$
    Bird2 $\surd$ $\surd$
    Football $\surd$ $\surd$
    Lemming $\surd$ $\surd$ $\surd$ $\surd$
    Woman $\surd$ $\surd$
    Bolt $\surd$ $\surd$ $\surd$
    CarDark $\surd$
    David1 $\surd$ $\surd$ $\surd$
    David2 $\surd$
    Singer1 $\surd$ $\surd$ $\surd$
    Basketball $\surd$ $\surd$ $\surd$ $\surd$
    下载: 导出CSV

    表  2  不同跟踪算法的平均中心误差

    Table  2  Average center errors of different tracking algorithms

    图像序列ASLAFRAGSCMVTDL1APGCTOABTLDLOTSPTAMFC
    Girl36.7624.27 $\mathbf{3.47}$8.6425.5119.454.687.6620.284.734.76
    Deer $\mathbf{6.74}$87.6437.627.9338.7652.1316.7725.3429.4428.7611.92
    Bird220.1214.9611.5346.2425.4437.8726.1610.2347.61 $\mathbf{6.32}$6.97
    Football16.6215.389.6413.5711.3117.449.2813.827.1511.27 $\mathbf{6.28}$
    Lemming47.52112.6375.4360.73142.2837.8273.7432.6814.48 $\mathbf{9.41}$11.39
    Woman76.57118.2822.24107.69115.57104.5830.94137.47118.4123.36 $\mathbf{21.71}$
    Bolt62.4273.629.3749.17132.4838.74129.56141.2417.6215.23 $\mathbf{8.44}$
    CarDark5.306.236.3228.72 $\mathbf{3.44}$18.7039.8621.3624.1821.588.35
    David1 $\mathbf{3.57}$84.414.3848.955.769.6931.268.9237.8423.299.36
    David28.9467.516.723.51 $\mathbf{3.23}$69.8336.346.733.978.489.21
    Singer145.6257.8317.8512.5349.8431.0736.2722.1716.64 $\mathbf{10.14}$10.25
    Basketball106.6218.42116.249.4884.4779.4137.1395.46127.8312.38 $\mathbf{7.73}$
    平均36.4056.7726.7333.1053.1743.0639.3343.5938.7914.589.70
    注:粗体为最优结果.
    下载: 导出CSV

    表  3  不同跟踪算法的跟踪重叠率

    Table  3  Tracking overlap ratio of different tracking algorithms

    图像序列ASLAFRAGSCMVTDL1APGCTOABTLDLOTSPTAMFC
    Girl0.310.41 $\mathbf{0.74}$0.690.390.290.730.560.430.710.73
    Deer $\mathbf{0.69}$0.110.470.630.450.340.560.410.500.530.61
    Bird20.660.700.740.410.630.440.580.800.43 $\mathbf{0.84}$0.83
    Football0.610.630.710.650.680.620.680.650.730.69 $\mathbf{0.75}$
    Lemming0.710.430.530.570.390.740.560.770.83 $\mathbf{0.86}$0.86
    Woman0.270.140.590.150.150.170.480.120.140.59 $\mathbf{0.61}$
    Bolt0.530.470.760.550.230.580.200.160.720.73 $\mathbf{0.77}$
    CarDark $\mathbf{0.82}$0.820.810.43 $\mathbf{0.82}$0.720.380.460.440.430.79
    David1 $\mathbf{0.83}$0.230.820.530.800.770.570.790.550.620.76
    David20.680.210.690.73 $\mathbf{0.74}$0.020.330.690.730.680.64
    Singer10.580.550.730.740.570.640.630.690.72 $\mathbf{0.76}$0.76
    Basketball0.190.630.170.670.250.270.590.210.140.68 $\mathbf{0.69}$
    平均0.570.450.650.560.510.470.520.530.530.680.73
    下载: 导出CSV

    表  4  不同跟踪算法的平均运行速度

    Table  4  Average running speeds of different tracking algorithms

    图像序列ASLAFRAGSCMVTDL1APGCTOABTLDLOTSPTAMFC
    Girl5.316.320.652.741.7638.2117.5126.840.790.473.68
    Deer6.244.780.972.671.6431.6314.7227.170.830.413.56
    Bird25.745.430.672.581.4927.069.9426.580.650.563.09
    Football6.155.680.613.141.6136.7319.6726.630.930.763.41
    Lemming6.786.270.692.771.7528.1510.4626.700.710.373.39
    Woman8.456.410.572.161.5332.4211.3126.320.660.434.37
    Bolt7.043.970.462.211.6327.188.6624.740.610.293.06
    CarDark7.234.230.482.491.7426.7910.3525.130.590.362.95
    David17.844.480.533.472.0334.2214.7526.470.670.543.86
    David25.875.250.482.681.4436.3616.6825.890.730.662.97
    Singer15.314.960.522.911.7328.1910.4326.310.710.433.42
    Basketball7.916.230.892.342.0425.819.0924.530.620.342.89
    下载: 导出CSV
  • [1] 尹宏鹏, 陈波, 柴毅, 刘兆栋.基于视觉的目标检测与跟踪综述.自动化学报, 2016, 42(10):1466-1489 http://www.aas.net.cn/CN/Y2016/V42/I10/1466

    Yin Hong-Peng, Chen Bo, Chai Yi, Liu Zhao-Dong. Vision-based object detection and tracking:a review. Acta Automatica Sinica, 2016, 42(10):1466-1489 http://www.aas.net.cn/CN/Y2016/V42/I10/1466
    [2] 黄丹丹, 孙怡.基于判别性局部联合稀疏模型的多任务跟踪.自动化学报, 2016, 42(3):402-415 http://www.aas.net.cn/CN/Y2016/V42/I3/402

    Huang Dan-Dan, Sun Yi. Tracking via multitask discriminative local joint sparse appearance model. Acta Automatica Sinica, 2016, 42(3):402-415 http://www.aas.net.cn/CN/Y2016/V42/I3/402
    [3] 徐建强, 陆耀.一种基于加权时空上下文的鲁棒视觉跟踪算法.自动化学报, 2015, 41(11):1901-1912 http://www.aas.net.cn/CN/Y2015/V41/I11/1901

    Xu Jian-Qiang, Lu Yao. Robust visual tracking via weighted spatio-temporal context learning. Acta Automatica Sinica, 2015, 41(11):1901-1912 http://www.aas.net.cn/CN/Y2015/V41/I11/1901
    [4] Yuan X H, Kong L B, Feng D C, Wei Z C. Automatic feature point detection and tracking of human actions in time-of-flight videos. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4):677-685 doi: 10.1109/JAS.2017.7510625
    [5] Zoidi O, Tefas A, Pitas I. Visual object tracking based on local steering kernels and color histograms. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(5):870-882 doi: 10.1109/TCSVT.2012.2226527
    [6] Duffner S, Garcia C. Using discriminative motion context for online visual object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(12):2215-2225 doi: 10.1109/TCSVT.2015.2504739
    [7] Wang X C, Tuüretken E, Fleuret F, Fua P. Tracking interacting objects using intertwined flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11):2312-2326 doi: 10.1109/TPAMI.2015.2513406
    [8] Khan Z H, Gu I Y H. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling. IEEE Transactions on Cybernetics, 2013, 43(6):2005-2019 doi: 10.1109/TSMCB.2013.2237900
    [9] 王美华, 梁云, 刘福明, 罗笑南.部件级表观模型的目标跟踪方法.软件学报, 2015, 26(10):2733-2747 http://doi.cnki.net/Resolution/Handler?doi=10.13328/j.cnki.jos.004737

    Wang Mei-Hua, Liang Yun, Liu Fu-Ming, Luo Xiao-Nan. Object tracking based on component-level appearance model. Journal of Software, 2015, 26(10):2733-2747 http://doi.cnki.net/Resolution/Handler?doi=10.13328/j.cnki.jos.004737
    [10] 张焕龙, 胡士强, 杨国胜.基于外观模型学习的视频目标跟踪方法综述.计算机研究与发展, 2015, 52(1):177-190 doi: 10.7544/issn1000-1239.2015.20130995

    Zhang Huan-Long, Hu Shi-Qiang, Yang Guo-Sheng. Video object tracking based on appearance models learning. Journal of Computer Research and Development, 2015, 52(1):177-190 doi: 10.7544/issn1000-1239.2015.20130995
    [11] 施华, 李翠华, 韦凤梅, 王华伟.基于像素可信度和空间位置的运动目标跟踪基于外观模型学习的视频目标跟踪方法综述.计算机研究与发展, 2005, 42(10):1726-1732 http://cdmd.cnki.com.cn/Article/CDMD-10561-1012452907.htm

    Shi Hua, Li Cui-Hua, Wei Feng-Mei, Wang Hua-Wei. Moving object tracking based on location and confidence of pixels. Journal of Computer Research and Development, 2005, 42(10):1726-1732 http://cdmd.cnki.com.cn/Article/CDMD-10561-1012452907.htm
    [12] Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In: Proceedings of the 22nd IEEE International Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009. 983-990
    [13] Oron S, Bar-Hillel A, Levi D, Avidan S. Locally orderless tracking. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1940-1947
    [14] 徐如意, 陈靓影.稀疏表示的Lucas-Kanade目标跟踪.中国图象图形学报, 2013, 18(3):283-289 doi: 10.11834/jig.20130306

    Xu Ru-Yi, Chen Liang-Ying. Lucas-Kanade tracking based on sparse representation. Journal of Image and Graphics, 2013, 18(3):283-289 doi: 10.11834/jig.20130306
    [15] Wang S, Lu H C, Yang F, Yang M H. Superpixel tracking. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1323-1330
    [16] Levinshtein A, Stere A, Kutulakos K N, Fleet D J, Dickinson S J, Siddiqi K, et al. Turbopixels:fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12):2290-2297 doi: 10.1109/TPAMI.2009.96
    [17] Baker Simon B, Matthews Iain M. Lucas-Kanade 20 years on:a unifying framework. International Journal of Computer Vision, 2004, 56(3):221-255 doi: 10.1023/B:VISI.0000011205.11775.fd
    [18] 刘万军, 刘大千, 费博雯, 曲海成.基于局部模型匹配的几何活动轮廓跟踪.中国图象图形学报, 2015, 20(5):652-663 doi: 10.11834/jig.20150508

    Liu Wan-Jun, Liu Da-Qian, Fei Bo-Wen, Qu Hai-Cheng. Geometric active contour tracking based on locally model matching. Journal of Image and Graphics, 2015, 20(5):652-663 doi: 10.11834/jig.20150508
    [19] Comaniciu D, Meer P. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(45):603-619
    [20] Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of the 2013 IEEE International Conference on Computer Vision and Pattern Recognition. Oregon, Portland, USA: IEEE, 2013. 2411-2418
    [21] Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1822-1829
    [22] Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 798-805
    [23] Zhong W, Lu H C, Yang M H. Robust object tracking via sparsity-based collaborative model. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1838-1845
    [24] Kwon J, Lee K M. Visual tracking decomposition. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 1269-1276
    [25] Bao C L, Wu Y, Ling H B, Ji H. Real time robust L1 tracker using accelerated proximal gradient approach. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1830-1837
    [26] Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of the 2012 European Conference on Computer Vision. Florence, Italy: Springer, 2012. 864-877
    [27] Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: Proceedings of the 2006 British Machine Vision Conference. Edinburgh, UK: BMVA Press, 2006. 47-56
    [28] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422 doi: 10.1109/TPAMI.2011.239
    [29] 高君宇, 杨小汕, 张天柱, 徐常胜.基于深度学习的鲁棒性视觉跟踪方法.计算机学报, 2016, 39(7):1419-1434 doi: 10.11897/SP.J.1016.2016.01419

    Gao Jun-Yu, Yang Xiao-Shan, Zhang Tian-Zhu, Xu Chang-Sheng. Robust visual tracking method via deep learning. Chinese Journal of Computers, 2016, 39(7):1419-1434 doi: 10.11897/SP.J.1016.2016.01419
    [30] 李庆武, 朱国庆, 周妍, 霍冠英.基于特征在线选择的目标压缩跟踪算法.自动化学报, 2015, 41(11):1961-1970 http://www.aas.net.cn/CN/Y2015/V41/I11/1961

    Li Qing-Wu, Zhu Guo-Qing, Zhou Yan, Huo Guan-Ying. Object compressive tracking via online feature selection. Acta Automatica Sinica, 2015, 41(11):1961-1970 http://www.aas.net.cn/CN/Y2015/V41/I11/1961
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  2280
  • HTML全文浏览量:  203
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-17
  • 录用日期:  2016-12-10
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回