A Novel Linear Hyperspectral Unmixing Method Based on Collaborative Sparsity and Total Variation
-
摘要: 稀疏分解是高光谱图像(Hyperspectral image,HSI)解混中的常用方法,为了克服传统稀疏解混方法只重视挖掘空间相关性而忽视稀疏性精确刻画的缺点,本文提出一种新的基于协同稀疏和全变差(Total variation,TV)相结合的高光谱空谱联合线性解混方法,从而进一步提高解混的精度.该方法基于已知光谱库的高光谱稀疏线性回归模型,利用TV正则项对高光谱邻域像元间的相关性进行约束;同时,协同稀疏性被用来刻画丰度系数的行稀疏性,从而表明协同稀疏先验对空谱联合解混精度的提高至关重要;最后采用交替方向乘子法求解模型.模拟高光谱数据实验结果定量地验证本文方法能够比现有同类方法获得更精确的解混结果,同时真实高光谱数据实验结果定性地验证了本文方法的有效性.Abstract: Sparse decomposition is one of the popular tools for hyperspectral unmixing. In order to overcome the shortcomings of traditional sparse unmixing methods which only pay attention to the spatial correlation and neglect depicting sparsity accurately, we propose a new spatial-spectrally linear hyperspectral unmixing method based on collaborative sparsity and total variation (TV) regularization to further improve the accuracy of unmixing. This method is based on hyperspectral sparse linear regression model with a spectral library given in advance, in which the total variation is utilized to impose a constraint on the correlation between neighboring pixels of hyperspectral image (HSI). Meanwhile, the collaborative sparsity is explored to depict the row-sparse characteristic of the fractional abundances, thus pointing out the fact that the collaborative sparsity prior plays an important role in further accuracy improvement of HSI spatial-spectral unmixing. At last, the proposed model is solved by the alternating direction method of multipliers. Experimental results on simulated hyperspectral data quantitatively validate that the our method outperforms those state-of-the-art algorithms, and the experimental results on real hyperspectral data qualitatively verify the effectiveness of the algorithm.1) 本文责任编委 辛景民
-
表 1 6种方法在最优参数($\lambda, \lambda_{\text{TV}}, \mu$)时对模拟数据集解混得到的SRE (dB), RMSE ($10^{-2}$)以及所需时间$t$ (s)
Table 1 SRE, RMSE ($10^{-2}$), the running time (seconds), and optimal parameters of the six unmixing methods for the simulated dataset
Constraint SNR (dB) NCLS SUnSAL CLSUnSAL NCLS-TV SUnSAL-TV 本文方法 SRE $-$6.605 2.810 5.781 6.325 9.752 9.887 不添加 RMSE 7.39 2.50 1.77 1.67 1.14 1.11 "和为一" 20 $t$ 27.893 15.895 46.083 288.623 344.225 312.128 约束 $\lambda$ 0 0.01 1 0 0.005 0.5 $\lambda_{\text{TV}}$ 0 0 0 0.01 0.01 0.05 $\mu$ 0.01 0.05 0.02 0.05 0.05 0.03 SRE 0.910 6.155 9.501 10.054 14.153 15.095 不添加 RMSE 3.11 1.70 1.16 1.09 0.68 0.61 "和为一" 30 $t$ 12.322 27.303 52.105 110.546 114.569 91.574 约束 $\lambda$ 0 0.01 1 0 0.005 0.5 $\lambda_{\text{TV}}$ 0 0 0 0.01 0.01 0.05 $\mu$ 0.01 0.05 0.02 0.05 0.05 0.03 SRE 5.497 11.150 17.850 18.772 22.003 23.625 不添加 RMSE 1.83 0.96 0.41 0.40 0.27 0.23 "和为一" 40 $t$ 7.2 30.76 17.406 122.905 129.609 97.493 约束 $\lambda$ 0 0.01 0.5 0 0.0005 0.1 $\lambda_{\text{TV}}$ 0 0 0 0.05 0.005 0.005 $\mu$ 0.01 0.05 0.08 0.04 0.04 0.05 SRE 2.339 2.861 5.826 7.033 10.069 10.123 添加 RMSE 2.64 2.50 1.75 1.54 1.08 1.06 "和为一" 20 $t$ 36.146 22.197 58.385 28.750 351.530 320.872 约束 $\lambda$ 0 0.1 1 0 0.0005 0.05 $\lambda_{\text{TV}}$ 0 0 0 0.05 0.1 0.05 $\mu$ 0.01 0.05 0.05 0.05 0.5 0.3 SRE 5.955 6.176 9.680 13.424 14.619 15.272 添加 RMSE 1.74 1.70 1.53 0.74 0.64 0.60 "和为一" 30 $t$ 18.981 31.524 62.153 119.349 125.995 124.671 约束 $\lambda$ 0 0.05 1 0 0.005 0.5 $\lambda_{\text{TV}}$ 0 0 0 0.01 0.01 0.005 $\mu$ 0.01 0.05 0.02 0.8 0.8 0.02 SRE 10.633 11.317 19.010 22.344 22.390 23.998 添加 RMSE 1.01 0.94 0.39 0.26 0.25 0.22 "和为一" 40 $t$ 11.571 35.470 27.047 128.115 140.698 109.489 约束 $\lambda$ 0 0.01 0.5 0 0.0005 0.1 $\lambda_{\text{TV}}$ 0 0 0 0.05 0.005 0.005 $\mu$ 0.01 0.05 0.03 0.05 0.1 0.04 -
[1] 童庆禧, 张兵, 郑兰芬.高光谱遥感:原理、技术与应用.北京:高等教育出版社, 2006.Tong Qing-Xi, Zhang Bing, Zheng Lan-Feng. Hyperspectral Remote Sensing:Theory, Technology and Applications. Beijing:Higher Education Press, 2006. [2] 杨华东. 高光谱遥感影像光谱解混算法研究[博士学位论文], 大连海事大学, 中国, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10151-1015354106.htmYang Hua-Dong. Research on spectral unmixing algorithms for hyperspectral remote sensing image[Ph. D. dissertation], Dalian Maritime University, China, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10151-1015354106.htm [3] Bioucas-Dias J M, Nascimento J M P. Hyperspectral subspace identification. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8):2435-2445 doi: 10.1109/TGRS.2008.918089 [4] Bioucas-Dias J M, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J. Hyperspectral unmixing overview:geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2):354-379 doi: 10.1109/JSTARS.2012.2194696 [5] 王茂芝, 徐文皙, 王璐, 郭科.高光谱遥感影像端元提取算法研究进展及分类.遥感技术与应用, 2015, 30(4):616-625 http://www.cnki.com.cn/Article/CJFDTotal-YGJS201504002.htmWang Mao-Zhi, Xu Wen-Xi, Wang Lu, Guo Ke. Research progress on endmember extraction algorithm and its classification of hyperspectral remote sensing imagery. Remote Sensing Technology and Application, 2015, 30(4):616-625 http://www.cnki.com.cn/Article/CJFDTotal-YGJS201504002.htm [6] Jia S, Qian Y T. Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):161-173 doi: 10.1109/TGRS.2008.2002882 [7] Liu J J, Wu Z B, Wei Z H, Xiao L, Sun L. A novel sparsity constrained nonnegative matrix factorization for hyperspectral unmixing. In: Proceedings of the 2012 IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS). Munich, Germany: IEEE, 2012. 1389-1392 [8] Iordache M D. A sparse regression approach to hyperspectral unmixing[Ph. D. dissertation], Universidade Tecnica de Lisboa, Portugal, 2011 [9] Fu X, Ma W K, Chan T H, Bioucas-Dias J M. Self-dictionary sparse regression for hyperspectral unmixing:greedy pursuit and pure pixel search are related. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(6):1128-1141 doi: 10.1109/JSTSP.2015.2410763 [10] Iordache M D, Bioucas-Dias J M, Plaza A. Sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2014-2039 doi: 10.1109/TGRS.2010.2098413 [11] Bioucas-Dias J M. A variable splitting augmented lagrangian approach to linear spectral unmixing. In: Proceedings of the 1st IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Grenoble, France: IEEE, 2009. 1-4 [12] Iordache M D, Bioucas-Dias J M, Plaza A. Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11):4484-4502 doi: 10.1109/TGRS.2012.2191590 [13] Sun L, Wu Z B, Liu J J, Xiao L, Wei Z H. Supervised spectral-spatial hyperspectral image classification with weighted Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1490-1503 doi: 10.1109/TGRS.2014.2344442 [14] 宋义刚, 吴泽彬, 韦志辉, 孙乐, 刘建军.稀疏性高光谱解混方法研究.南京理工大学学报, 2013, 37(4):486-492 http://d.old.wanfangdata.com.cn/Periodical/njlgdxxb201304005Song Yi-Gang, Wu Ze-Bin, Wei Zhi-Hui, Sun Le, Liu Jian-Jun. Survey of sparsity constrained hyperspectral unmixing. Journal of Nanjing University of Science and Technology, 2013, 37(4):486-492 http://d.old.wanfangdata.com.cn/Periodical/njlgdxxb201304005 [15] Iordache M D, Bioucas-Dias J M, Plaza A. Collaborative sparse regression for hyperspectral unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):341-354 doi: 10.1109/TGRS.2013.2240001 [16] Iordache M D, Bioucas-Dias J M, Plaza A, Somers B. MUSIC-CSR:hyperspectral unmixing via multiple signal classification and collaborative sparse regression. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4364-4382 doi: 10.1109/TGRS.2013.2281589 [17] 邓承志, 张绍泉, 汪胜前, 田伟, 朱华生, 胡赛凤. L1稀疏正则化的高光谱混合像元分解算法比较.红外与激光工程, 2015, 44(3):1092-1097 http://manu57.magtech.com.cn/Jwk_dzxb/CN/abstract/abstract8426.shtmlDeng Cheng-Zhi, Zhang Shao-Quan, Wang Sheng-Qian, Tian Wei, Zhu Hua-Sheng, Hu Sai-Feng. Hyperspectral unmixing algorithm based on L1 regularization. Infrared and Laser Engineering, 2015, 44(3):1092-1097 http://manu57.magtech.com.cn/Jwk_dzxb/CN/abstract/abstract8426.shtml [18] Yang J X, Zhao Y Q, Chan J C W, Kong S G. Coupled sparse denoising and unmixing with low-rank constraint for hyperspectral image. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1818-1833 doi: 10.1109/TGRS.2015.2489218 [19] Themelis K E, Rontogiannis A, Koutroumbas K D. A novel hierarchical Bayesian approach for sparse semisupervised hyperspectral unmixing. IEEE Transactions on Signal Processing, 2012, 60(2):585-599 doi: 10.1109/TSP.2011.2174052 [20] 孔繁锵, 郭文骏, 沈秋, 王丹丹.复合正则化联合稀疏贝叶斯学习的高光谱稀疏解混算法.红外与毫米波学报, 2016, 35(2):219-226 doi: 10.11972/j.issn.1001-9014.2016.02.018Kong Fan-Qiang, Guo Wen-Jun, Shen Qiu, Wang Dan-Dan. Compound regularized multiple sparse Bayesian learning algorithm for sparse unmixing of hyperspectral data. Waves Journal of Infrared and Millimeter Waves, 2016, 35(2):219-226 doi: 10.11972/j.issn.1001-9014.2016.02.018 [21] Bioucas-Dias J M, Figueiredo M A T. Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing. In: Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Reykjavik, Iceland: IEEE, 2010. 1-4 [22] Altmann Y, Pereyra M, Bioucas-Dias J M. Collaborative sparse regression using spatially correlated supports-application to hyperspectral unmixing. IEEE Transactions on Image Processing, 2015, 24(12):5800-5811 doi: 10.1109/TIP.2015.2487862 [23] 赵春晖, 肖健钰, 齐滨.一种改进的OMP高光谱稀疏解混算法.沈阳大学学报(自然科学版), 2015, 27(3):206-213 http://cdmd.cnki.com.cn/Article/CDMD-10701-1016214598.htmZhao Chun-Hui, Xiao Jian-Yu, Qi Bin. An improved OMP algorithm for hyperspectral sparse unmixing. Journal of Shenyang University (Natural Science), 2015, 27(3):206-213 http://cdmd.cnki.com.cn/Article/CDMD-10701-1016214598.htm [24] Guerra R, Santos L, López S, Sarmiento R. A new fast algorithm for linearly unmixing hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6752-6765 doi: 10.1109/TGRS.2015.2447573