2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义标签多伯努利滤波的可分辨群目标跟踪算法

朱书军 刘伟峰 崔海龙

朱书军, 刘伟峰, 崔海龙. 基于广义标签多伯努利滤波的可分辨群目标跟踪算法. 自动化学报, 2017, 43(12): 2178-2189. doi: 10.16383/j.aas.2017.c160334
引用本文: 朱书军, 刘伟峰, 崔海龙. 基于广义标签多伯努利滤波的可分辨群目标跟踪算法. 自动化学报, 2017, 43(12): 2178-2189. doi: 10.16383/j.aas.2017.c160334
ZHU Shu-Jun, LIU Wei-Feng, CUI Hai-Long. Multiple Resolvable Groups Tracking Using the GLMB Filter. ACTA AUTOMATICA SINICA, 2017, 43(12): 2178-2189. doi: 10.16383/j.aas.2017.c160334
Citation: ZHU Shu-Jun, LIU Wei-Feng, CUI Hai-Long. Multiple Resolvable Groups Tracking Using the GLMB Filter. ACTA AUTOMATICA SINICA, 2017, 43(12): 2178-2189. doi: 10.16383/j.aas.2017.c160334

基于广义标签多伯努利滤波的可分辨群目标跟踪算法

doi: 10.16383/j.aas.2017.c160334
基金项目: 

国家自然科学基金 61271144

国家自然科学基金 61402140

浙江省自然科学基金 LY15F030020

国家自然科学基金 61273170

国家自然科学基金 61333011

详细信息
    作者简介:

    朱书军 杭州电子科技大学自动化学院系统科学与控制工程研究所硕士研究生.2014年获得丽水学院学士学位.主要研究方向为目标跟踪与信息融合.E-mail:zsjun92@163.com

    崔海龙 杭州电子科技大学自动化学院系统科学与控制工程研究所硕士研究生.2014年获得安徽工程大学学士学位.主要研究方向为目标跟踪与信息融合.E-mail:cuihailong_86@163.com

    通讯作者:

    刘伟峰 杭州电子科技大学副教授.主要研究方向为目标跟踪, 不确定信息处理与模式识别.本文通信作者.E-mail:liuwf@hdu.edu.cn

Multiple Resolvable Groups Tracking Using the GLMB Filter

Funds: 

National Natural Science Foundation of China 61271144

National Natural Science Foundation of China 61402140

Natural Science Foundation of Zhejiang Province LY15F030020

National Natural Science Foundation of China 61273170

National Natural Science Foundation of China 61333011

More Information
    Author Bio:

    Master student at the Institute of Systems Science and Control Engineering, School of Automation, Hangzhou Dianzi University. He received his bachelor degree from Lishui University in 2014. His research interest covers target tracking and information fusion

    Master student at the Institute of Systems Science and Control Engineering, School of Automation, Hangzhou Dianzi University. He received his bachelor degree from Anhui Polytechnic University in 2014. His research interest covers target tracking and information fusion

    Corresponding author: LIU Wei-Feng Associate professor at Hangzhou Dianzi University. His research interest covers target tracking, uncertain information processing, and pattern recognition. Corresponding author of this paper
  • 摘要: 针对杂波条件下可分辨群目标的状态估计、目标个数与子群个数估计问题,提出了一种基于标签随机有限集(Label random finite set,L-RFS)框架下的可分辨群目标跟踪算法,该算法主要包括两个方面:可分辨多群目标动态建模和多群目标的跟踪估计.本文工作主要包括:1)结合图论中的邻接矩阵对可分辨群目标运动进行动态建模.2)利用基于L-RFS的广义标签多伯努利滤波(Generalizes label multi-Bernoulli,GLMB)算法对目标的状态和个数进行估计,并且通过估计邻接矩阵得到群的结构和个数估计.3)通过个数不同、结构不同的三个子群目标在二维平面分别做线性和非线性运动进行算法验证.仿真分析表明本文算法能够准确估计出群目标中各目标的状态、个数以及子群的个数,并且能获得目标的航迹估计.
    1)  本文责任编委 郭戈
  • 图  1  群目标(“+”表示量测)

    Fig.  1  The group target ("+" denotes measurement)

    图  2  扩展目标(“+”表示量测)

    Fig.  2  The extended target ("+" denotes measurement)

    图  3  群目标结构模型

    Fig.  3  The structure model of group target

    图  4  目标之间依赖关系

    Fig.  4  The dependencies of targets

    图  5  三个群目标结构

    Fig.  5  Three group targets structure

    图  6  多群目标真实轨迹

    Fig.  6  The true tracks of groups

    图  7  由CBMeMBer滤波器得到的轨迹估计

    Fig.  7  Track estimation by CBMeMBer filter

    图  8  由GLMB滤波器得到的轨迹估计

    Fig.  8  Track estimation by GLMB filter

    图  9  由GLMB滤波算法得到状态估计

    Fig.  9  The state estimation by GLMB filter

    图  10  OSPA距离对比图(经50次MC平均)

    Fig.  10  50 MC run average of the compare of OSPA

    图  11  目标个数估计

    Fig.  11  The estimated number of targets

    图  12  子群个数估计

    Fig.  12  The estimated number of groups

    图  13  多群目标真实轨迹

    Fig.  13  The true tracks of groups

    图  14  由GLMB滤波算法得到的状态估计

    Fig.  14  The state estimation by GLMB filter

    图  15  目标个数估计

    Fig.  15  The estimated number of targets

    图  16  OSPA距离对比(经50次MC平均)

    Fig.  16  The OSPA distance (50 MCs)

    图  17  群的个数估计

    Fig.  17  The estimated number of groups

    表  1  算法性能分析

    Table  1  Performance analysis of algorithms

    算法 GLMB算法 CBMeMBer算法
    线性 非线性 线性 非线性
    时间(秒/步) 1.35 2 0.044 0.52
    下载: 导出CSV
  • [1] Bar-Shalom Y, Tse E. Tracking in a cluttered environment with probabilistic data association. Automatica, 1975, 11(5):451-460 doi: 10.1016/0005-1098(75)90021-7
    [2] Bar-Shalom Y. Tracking methods in a multitarget environment. IEEE Transactions on Automatic Control, 1978, 23(4):618-626 doi: 10.1109/TAC.1978.1101790
    [3] Fortmann T, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, 1983, 8(3):173-184 doi: 10.1109/JOE.1983.1145560
    [4] Reid D. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6):843-854 doi: 10.1109/TAC.1979.1102177
    [5] Blackman S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1):5-18 doi: 10.1109/MAES.2004.1263228
    [6] Salmond D J, Gordon N J. Group and extended object tracking. In:Proceedings of the 1999 IEE Colloquium on Target Tracking:Algorithms and Applications. London, UK:IEEE, 1999. 16/1-16/4 http://ieeexplore.ieee.org/document/827262/
    [7] 刘伟峰, 柴中, 文成林.基于随机采样的多量测目标跟踪算法.自动化学报, 2013, 39(2):168-178 http://www.aas.net.cn/CN/abstract/abstract17858.shtml

    Liu Wei-Feng, Chai Zhong, Wen Cheng-Lin. Multi-measurement target tracking by using random sampling approach. Acta Automatica Sinica, 2013, 39(2):168-178 http://www.aas.net.cn/CN/abstract/abstract17858.shtml
    [8] Koch J W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3):1042-1059 doi: 10.1109/TAES.2008.4655362
    [9] Koch W, Van Keuk G. Multiple hypothesis track maintenance with possibly unresolved measurements. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3):883-892 doi: 10.1109/7.599263
    [10] Feldmann M, Franken D, Koch W. Tracking of extended objects and group targets using random matrices. IEEE Transactions on Signal Processing, 2011, 59(4):1409-1420 doi: 10.1109/TSP.2010.2101064
    [11] 黄剑, 胡卫东.基于贝叶斯框架的空间群目标跟踪技术.雷达学报, 2013, 2(1):86-96 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ldax201301015&dbname=CJFD&dbcode=CJFQ

    Huang Jian, Hu Wei-Dong. Tracking of group space objects within Bayesian framework. Journal of Radars, 2013, 2(1):86-96 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ldax201301015&dbname=CJFD&dbcode=CJFQ
    [12] 李振兴, 刘进忙, 李松, 白东颖, 倪鹏.基于箱式粒子滤波的群目标跟踪算法.自动化学报, 2015, 41(4):785-798 http://www.aas.net.cn/CN/abstract/abstract18653.shtml

    Li Zhen-Xing, Liu Jin-Mang, Li Song, Bai Dong-Ying, Ni Peng. Group targets tracking algorithm based on box particle filter. Acta Automatica Sinica, 2015, 41(4):785-798 http://www.aas.net.cn/CN/abstract/abstract18653.shtml
    [13] Baum M, Hanebeck U D. Random hypersurface models for extended object tracking. In:Proceedings of the 9th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). Ajman, United Arab Emirates:IEEE, 2009. 178-183 http://ieeexplore.ieee.org/document/5407526/
    [14] Gilholm K, Salmond D. Spatial distribution model for tracking extended objects. IEEE Proceedings-Radar, Sonar and Navigation, 2005, 152(5):364-371 doi: 10.1049/ip-rsn:20045114
    [15] Gilholm K, Godsill S, Maskell S, Salmond D. Poisson models for extended target and group tracking. In:Proceedings of the 2005 SPIE 5913, Signal and Data Processing of Small Targets. San Diego, USA:SPIE, 2005. 230-241 doi: 10.1117/12.618730
    [16] Mahler R. PHD filters for nonstandard targets, Ⅰ:extended targets. In:Proceedings of the 12th International Conference on Information Fusion. Seattle, USA:IEEE, 2009. 915-921 http://ieeexplore.ieee.org/document/5203632
    [17] Lundquist C, Granström K, Orguner U. Estimating the shape of targets with a PHD filter. In:Proceedings of the 14th International Conference on Information Fusion (FUSION). Chicago, USA:IEEE, 2011. 49-56 http://ieeexplore.ieee.org/document/5977704/
    [18] Granström K, Lundquist C, Orguner U. A Gaussian mixture PHD filter for extended target tracking. In:Proceedings of the 13th International Conference on Information Fusion (FUSION). Edinburgh, UK:IEEE, 2010. 1-8 http://ieeexplore.ieee.org/document/5711885
    [19] Orguner U, Lundquist C, Granström K. Extended target tracking with a cardinalized probability hypothesis density filter. In:Proceedings of the 14th International Conference on Information Fusion (FUSION). Chicago, USA:IEEE, 2011. 65-72 http://ieeexplore.ieee.org/document/5977726/
    [20] 连峰, 韩崇昭, 刘伟峰, 元向辉.基于SMC-PHDF的部分可分辨的群目标跟踪算法.自动化学报, 2010, 36(5):731-741 http://www.aas.net.cn/CN/abstract/abstract13703.shtml

    Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Tracking partly resolvable group targets using SMC-PHDF. Acta Automatica Sinica, 2010, 36(5):731-741 http://www.aas.net.cn/CN/abstract/abstract13703.shtml
    [21] 连峰, 马冬冬, 元向辉, 陈文, 韩崇昭.扩展目标CBMeMBer滤波器及其高斯混合实现.控制与决策, 2015, 30(4):611-616 http://www.cnki.com.cn/Article/CJFDTotal-KZYC201504006.htm

    Lian Feng, Ma Dong-Dong, Yuan Xiang-Hui, Chen Wen, Han Chong-Zhao. CBMeMBer filter for extended targets and its Gaussian mixture implementations. Control and Decision, 2015, 30(4):611-616 http://www.cnki.com.cn/Article/CJFDTotal-KZYC201504006.htm
    [22] Gning A, Mihaylova L, Maskell S, Pang S K, Godsill S. Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Transactions on Signal Processing, 2011, 59(4):1383-1396 doi: 10.1109/TSP.2010.2103062
    [23] Ristic B, Sherrah J. Bernoulli filter for joint detection and tracking of an extended object in clutter. IET Radar, Sonar, and Navigation, 2013, 7(1):26-35 doi: 10.1049/iet-rsn.2012.0069
    [24] Vo B T, Vo B N. Labeled random finite sets and multi-object conjugate priors. IEEE Transactions on Signal Processing, 2013, 61(13):3460-3475 doi: 10.1109/TSP.2013.2259822
    [25] Vo B N, Vo B T, Phung D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, 62(24):6554-6567 doi: 10.1109/TSP.2014.2364014
    [26] Beard M, Reuter S, Granstrom K, Vo B T, Vo B N, Scheel A. A generalised labelled multi-Bernoulli filter for extended multi-target tracking. In:Proceedings of the 18th International Conference on Information Fusion (FUSION). Washington, USA:IEEE, 2015. 991-998 http://ieeexplore.ieee.org/document/7266667/
    [27] Zhu S J, Liu W F, Weng C L, Cui H L. Multiple group targets tracking using the generalized labeled multi-Bernoulli filter. In:Proceedings of the 35th Chinese Control Conference. Chengdu, China:IEEE, 2016. 4871-4876 http://ieeexplore.ieee.org/document/7554109/
    [28] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1152-1178 doi: 10.1109/TAES.2003.1261119
    [29] Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Boston, USA:Artech House, 2007.
    [30] Anderson B D O, Yu C B, Fidan B, Hendrickx J M. Control and information architectures for formations. In:Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. Munich, Germany:IEEE, 2006. 1127-1138 http://ieeexplore.ieee.org/document/4776802/
    [31] Yu C B, Hendrickx J M, Fidan B, Anderson B D O, Blondel V D. Three and higher dimensional autonomous formations:rigidity, persistence and structural persistence. Automatica, 2007, 43(3):387-402 doi: 10.1016/j.automatica.2006.08.025
    [32] Diestel R. Graph Theory (3rd edition). New York:Spring-Verlag, 2005.
    [33] Chung F. Lecture Notes on Spectral Graph Theory. Providence, RI:AMS Publications, 1997.
    [34] Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2):409-423 doi: 10.1109/TSP.2008.2007924
    [35] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457 doi: 10.1109/TSP.2008.920469
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  2572
  • HTML全文浏览量:  372
  • PDF下载量:  694
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 录用日期:  2016-12-27
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回