[1]
|
张晓平, 阮晓钢, 肖尧, 朱晓庆.两轮机器人具有内发动机机制的感知运动系统的建立.自动化学报, 2016, 42(8):1175-1184 http://www.aas.net.cn/CN/abstract/abstract18907.shtmlZhang Xiao-Ping, Ruan Xiao-Gang, Xiao Yao, Zhu Xiao-Qing. Establishment of a two-wheeled robot's sensorimotor system with mechanism of intrinsic motivation. Acta Automatica Sinica, 2016, 42(8):1175-1184 http://www.aas.net.cn/CN/abstract/abstract18907.shtml
|
[2]
|
董文杰, 霍伟.受非完整约束移动机器人的跟踪控制.自动化学报, 2000, 26(1):1-6 http://www.aas.net.cn/CN/abstract/abstract16055.shtmlDong Wen-Jie, Huo Wei. Tracking control of mobile robots with nonholonomic constraint. Acta Automatica Sinica, 2000, 26(1):1-6 http://www.aas.net.cn/CN/abstract/abstract16055.shtml
|
[3]
|
闵海波, 刘源, 王仕成, 孙富春.多个体协调控制问题综述.自动化学报, 2012, 38(10):1557-1570 http://www.aas.net.cn/CN/abstract/abstract17765.shtmlMin Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10):1557-1570 http://www.aas.net.cn/CN/abstract/abstract17765.shtml
|
[4]
|
Velasco-Villa M, Castro-Linares R, Rosales-Hernández F, del Muro-Cuéllar B, Hernández-Pérez M A. Discrete-time synchronization strategy for input time-delay mobile robots. Journal of the Franklin Institute, 2013, 350(10):2911-2935 doi: 10.1016/j.jfranklin.2013.05.029
|
[5]
|
Rosales-Hernández F, Velasco-Villa M, Castro-Linares R, del Muro-Cuéllar B, Hernández-Pérez M Á. Synchronization strategy for differentially driven mobile robots:discrete-time approach. International Journal of Robotics and Automation, 2015, 30(1):50-59 https://www.researchgate.net/profile/Rafael_Castro-Linares/publication/277941042_Synchronization_strategy_for_differentially_driven_mobile_robots_Discrete-time_approach/links/5604293608aea25fce30b9f2.pdf?origin=publication_list
|
[6]
|
Dong W J, Djapic V. Leader-following control of multiple nonholonomic systems over directed communication graphs. International Journal of Systems Science, 2016, 47(8):1877-1890 doi: 10.1080/00207721.2014.955553
|
[7]
|
Peng Z X, Yang S C, Wen G G, Rahmani A, Yu Y G. Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots. Neurocomputing, 2016, 173(P3):1485-1494 https://www.researchgate.net/publication/282409600_Adaptive_Distributed_Formation_Control_for_Multiple_Nonholonomic_Wheeled_Mobile_Robots
|
[8]
|
Cepeda-Gomez R, Perico L F. Formation control of nonholonomic vehicles under time delayed communications. IEEE Transactions on Automation Science and Engineering, 2015, 12(3):819-826 doi: 10.1109/TASE.2015.2424252
|
[9]
|
Dong X W, Zhou Y, Ren Z, Zhong Y S. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control Engineering Practice, 2016, 46:26-36 doi: 10.1016/j.conengprac.2015.10.001
|
[10]
|
Wang R, Dong X W, Li Q D, Ren Z. Distributed adaptive time-varying formation for multi-agent systems with general high-order linear time-invariant dynamics. Journal of the Franklin Institute, 2016, 353(10):2290-2304 doi: 10.1016/j.jfranklin.2016.03.016
|
[11]
|
Bai J, Wen G G, Rahmani A, Chu X, Yu Y G. Consensus with a reference state for fractional-order multi-agent systems. International Journal of Systems Science, 2016, 47(1):222-234 doi: 10.1080/00207721.2015.1056273
|
[12]
|
Wang C, Sun D. A synchronous controller for multiple mobile robots in time-varied formations. In:Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France:IEEE, 2008. 2765-2770
|
[13]
|
Brinon-Arranz L, Seuret A, Canudas-de-Wit C. Cooperative control design for time-varying formations of multi-agent systems. IEEE Transactions on Automatic Control, 2014, 59(8):2283-2288 doi: 10.1109/TAC.2014.2303213
|
[14]
|
Ferrers N M. Extension of Lagrange's equations. Journal of Pure and Applied Mathematics, 1872, 12(45):1-5 http://www.ams.org/bull/1932-38-02/S0002-9904-1932-05342-3/S0002-9904-1932-05342-3.pdf
|
[15]
|
Khooban M H. Design an intelligent proportional-derivative (PD) feedback linearization control for nonholonomic-wheeled mobile robot. Journal of Intelligent & Fuzzy Systems, 2014, 26(4):1833-1843 https://www.deepdyve.com/lp/ios-press/design-an-intelligent-proportional-derivative-pd-feedback-xTHDTVhiJw
|
[16]
|
Oriolo G, De Luca A, Vendittelli M. WMR control via dynamic feedback linearization:design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 2002, 10(6):835-852 doi: 10.1109/TCST.2002.804116
|
[17]
|
Rudra S, Barai R K, Maitra M. Design and implementation of a block-backstepping based tracking control for nonholonomic wheeled mobile robot. International Journal of Robust and Nonlinear Control, 2016, 26(14):3018-3035 doi: 10.1002/rnc.3485
|
[18]
|
Velazquez M, Cruz D, Garcia S, Bandala M. Velocity and motion control of a self-balancing vehicle based on a cascade control strategy. International Journal of Advanced Robotic Systems, 2016, 13(3):Article No.1061 http://www.intechopen.com/journals/statistics/international_journal_of_advanced_robotic_systems/velocity-and-motion-control-of-a-self-balancing-vehicle-based-on-a-cascade-control-strategy
|
[19]
|
Wikipedia. Breadth-first/search[Online], available:https://en.wikipedia.org/wiki/Breadth-first_search, November 10, 2016.
|
[20]
|
Zhao J, Liu G P. Model-based remote control of nonholonomic wheeled robot with time delay and packet loss in forward channel. In:Proceedings of the 2015 Chinese Automation Congress. Wuhan, China:IEEE, 2015. 1669-1704
|