2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据的流程工业生产过程指标预测方法综述

陈龙 刘全利 王霖青 赵珺 王伟

陈龙, 刘全利, 王霖青, 赵珺, 王伟. 基于数据的流程工业生产过程指标预测方法综述. 自动化学报, 2017, 43(6): 944-954. doi: 10.16383/j.aas.2017.c170136
引用本文: 陈龙, 刘全利, 王霖青, 赵珺, 王伟. 基于数据的流程工业生产过程指标预测方法综述. 自动化学报, 2017, 43(6): 944-954. doi: 10.16383/j.aas.2017.c170136
CHEN Long, LIU Quan-Li, WANG Lin-Qing, ZHAO Jun, WANG Wei. Data-driven Prediction on Performance Indicators in Process Industry: A Survey. ACTA AUTOMATICA SINICA, 2017, 43(6): 944-954. doi: 10.16383/j.aas.2017.c170136
Citation: CHEN Long, LIU Quan-Li, WANG Lin-Qing, ZHAO Jun, WANG Wei. Data-driven Prediction on Performance Indicators in Process Industry: A Survey. ACTA AUTOMATICA SINICA, 2017, 43(6): 944-954. doi: 10.16383/j.aas.2017.c170136

基于数据的流程工业生产过程指标预测方法综述

doi: 10.16383/j.aas.2017.c170136
基金项目: 

国家自然科学基金 61473056

国家自然科学基金 61522304

国家科技支撑计划 61522304

国家自然科学基金 61533005

中央高校基本科研基金 (DUT16RC(3)031

国家自然科学基金 U1560102

详细信息
    作者简介:

    陈龙  大连理工大学控制科学与工程学院博士研究生.主要研究方向为流程工业生产计划与优化调度和机器学习.E-mail:chl1207@aliyun.com

    王霖青   大连理工大学控制科学与工程学院讲师.主要研究方向为流程工业生产计划与优化调度, 计算机集成制造, 机器学习.E-mail:wanglinqing@dlut.edu.cn

    赵珺   大连理工大学控制科学与工程学院教授.主要研究方向为流程工业生产计划与优化调度, 计算机集成制造, 智能优化, 机器学习和知识自动化.E-mail:zhaoj@dlut.edu.cn

    王伟  大连理工大学控制科学与工程学院教授.主要研究方向为复杂系统建模、控制与优化, 流程工业生产计划与优化调度, 知识自动化.E-mail:wangwei@dlut.edu.cn

    通讯作者:

    刘全利   大连理工大学控制科学与工程学院教授.主要研究方向为流程工业生产计划与优化调度, 嵌入式系统研究、设计及应用.E-mail:liuql@dlut.edu.cn

Data-driven Prediction on Performance Indicators in Process Industry: A Survey

Funds: 

National Natural Science Foundation of China 61473056

National Natural Science Foundation of China 61522304

National Key Technology Support Program 61522304

National Natural Science Foundation of China 61533005

Fundamental Research Funds for the Central Universities (DUT16RC(3)031

National Natural Science Foundation of China U1560102

More Information
    Author Bio:

     Ph. D. candidate at the School of Control Science and Engineering, Dalian University of Technology. His research interest covers production planning and scheduling optimization for process industry, and machine learning

     Lecturer at the School of Control Science and Engineering, Dalian University of Technology. His research interest covers production planning and scheduling optimization for process industry, computer integrated manufacturing, and machine learning

      Professor at the School of Control Science and Engineering, Dalian University of Technology. His research interest covers production planning and scheduling optimization for process industry, computer integrated manufacturing, intelligent optimization, machine learning, and knowledge automation

     Professor at the School of Control Science and Engineering, Dalian University of Technology. His research interest covers complex system modeling, control and optimization, production planning and scheduling optimization for process industry, and knowledge automation

    Corresponding author: LIU Quan-Li   Professor at the School of Control Science and Engineering, Dalian University of Technology. His research interest covers production planning and scheduling optimization for process industry and embedded systems research, design, and application. Corresponding author of this paper
  • 摘要: 生产过程关键指标的预测对于流程工业生产调度,安全生产和节能环保有着重要作用.目前,已有多种基于工业生产数据提出的生产过程指标预测方法,主要涉及特征(变量)选择,预测模型构建及其模型参数优化这三方面.本文分别针对以上三方面论述了基于数据的工业生产过程指标预测国内外研究现状,分析了各种方法的优缺点.最后,指出了流程工业生产过程指标预测方法在工业大数据及知识自动化等方面的未来研究方向和前景.
  • 图  1  基于数据生产关键指标预测的基本流程图

    Fig.  1  A flow chart of data-based prediction on performance indicators in process industry

  • [1] 桂卫华, 王成红, 谢永芳, 宋苏, 孟庆峰, 丁进良.流程工业实现跨越式发展的必由之路.中国科学基金, 2015, (5): 337-342 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201505005.htm

    Gui Wei-Hua, Wang Cheng-Hong, Xie Yong-Fang, Song Su, Meng Qing-Feng, Ding Jin-Liang. The necessary way to realize great-leap-forward development of process industries. Bulletin of National Natural Science Foundation of China, 2015, (5): 337-342 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201505005.htm
    [2] 中商智业. 2016年度全球钢铁生产大数据分析[Online], available: http://mt.sohu.com/20161110/n472825318.shtml, November 10, 2016.
    [3] Saxén H, Gao C H, Gao Z W. Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace——a review. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2213-2225 doi: 10.1109/TII.2012.2226897
    [4] Kim S I, Kim K E, Park E K, Song S W, Jung S. Estimation methods for efficiency of additive in removing impurity in hydrometallurgical purification process. Hydrometallurgy, 2007, 89(3-4): 242-252 doi: 10.1016/j.hydromet.2007.07.009
    [5] 商秀芹, 卢建刚, 孙优贤.基于遗传规划的铁矿烧结终点2级预测模型.浙江大学学报(工学版), 2010, 44(7): 1266-1269, 1281 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201007009.htm

    Shang Xiu-Qin, Lu Jian-Gang, Sun You-Xian. Genetic programming based two-term prediction model of iron ore burning through point. Journal of Zhejiang University (Engineering Science), 2010, 44(7): 1266-1269, 1281 http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201007009.htm
    [6] Zhang B, Yang C H, Li Y G, Wang X L, Zhu H Q, Gui W H. Additive requirement ratio prediction using trend distribution features for hydrometallurgical purification processes. Control Engineering Practice, 2016, 46: 10-25 doi: 10.1016/j.conengprac.2015.09.006
    [7] Zhao J, Liu Q L, Wang W, Pedrycz W, Cong L Q. Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 439-450 doi: 10.1109/TNNLS.2011.2179309
    [8] 周晓君, 阳春华, 桂卫华.全局优化视角下的有色冶金过程建模与控制.控制理论与应用, 2015, 32(9): 1158-1169 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201509004.htm

    Zhou Xiao-Jun, Yang Chun-Hua, Gui Wei-Hua. Modeling and control of nonferrous metallurgical processes on the perspective of global optimization. Control Theory & Applications, 2015, 32(9): 1158-1169 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201509004.htm
    [9] Remes A, Vaara N, Saloheimo K, Koivo H. Prediction of concentrate grade in industrial gravity separation plant-comparison of rPLS and neural network. IFAC Proceedings Volumes, 2008, 41(2): 3280-3285 doi: 10.3182/20080706-5-KR-1001.00557
    [10] 王俊凯, 乔非, 祝军, 倪嘉呈.基于支持向量机的烧结能耗及性能指标预测模型.同济大学学报(自然科学版), 2014, 42(8): 1256-1260 http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201408018.htm

    Wang Jun-Kai, Qiao Fei, Zhu Jun, Ni Jia-Cheng. SVR-based predictive models of energy consumption and performance criteria for sintering. Journal of Tongji University (Natural Science), 2014, 42(8): 1256-1260 http://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201408018.htm
    [11] Asorey-Cacheda R, Garcia-Sanchez A J, Garcia-Sanchez F, Garcia-Haro J. A survey on non-linear optimization problems in wireless sensor networks. Journal of Network and Computer Applications, 2017, 82: 1-20 doi: 10.1016/j.jnca.2017.01.001
    [12] Korayem M H, Hoshiar A K, Nazarahari M. A hybrid co-evolutionary genetic algorithm for multiple nanoparticle assembly task path planning. International Journal of Advanced Manufacturing Technology, 2016, 87(9-12): 3527-3543 doi: 10.1007/s00170-016-8683-4
    [13] Xavier-De-Souza S, Suykens J A K, Vandewalle J, Bolle D. Coupled simulated annealing. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(2): 320-335 doi: 10.1109/TSMCB.2009.2020435
    [14] Ding S X, Yin S, Peng K X, Hao H Y, Shen B. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2239-2247 doi: 10.1109/TII.2012.2214394
    [15] Wang L P, Wang Y L, Chang Q. Feature selection methods for big data bioinformatics: a survey from the search perspective. Methods, 2016, 111: 21-31 doi: 10.1016/j.ymeth.2016.08.014
    [16] 蒋朝辉, 尹菊萍, 桂卫华, 阳春华.基于复合差分进化算法与极限学习机的高炉铁水硅含量预报.控制理论与应用, 2016, 33(8): 1089-1095 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201608014.htm

    Jiang Zhao-Hui, Yin Ju-Ping, Gui Wei-Hua, Yang Chun-Hua. Prediction for blast furnace silicon content in hot metal based on composite differential evolution algorithm and extreme learning machine. Control Theory & Applications, 2016, 33(8): 1089-1095 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201608014.htm
    [17] Singh V, Tathavadkar V, Rao S M, Raju K S. Predicting the performance of submerged arc furnace with varied raw material combinations using artificial neural network. Journal of Materials Processing Technology, 2007, 183(1): 111-116 doi: 10.1016/j.jmatprotec.2006.10.004
    [18] Zhao J, Wang W, Liu Y, Pedrycz W. A two-stage online prediction method for a blast furnace gas system and its application. IEEE Transactions on Control Systems Technology, 2011, 19(3): 507-520 doi: 10.1109/TCST.2010.2051545
    [19] Chen Y W, Lin C J. Combining SVMs with various feature selection strategies. Feature Extraction. Berlin Heidelberg: Springer, 2006. 315-324
    [20] Saxén H, Pettersson F. Method for the selection of inputs and structure of feedforward neural networks. Computers & Chemical Engineering, 2006, 30(6-7): 1038-1045
    [21] Wang D, Liu J, Srinivasan R. Data-driven soft sensor approach for quality prediction in a refining process. IEEE Transactions on Industrial Informatics, 2010, 6(1): 11-17 doi: 10.1109/TII.2009.2025124
    [22] 邓聚龙.灰色系统理论教程.武汉:华中理工大学出版社, 1990.

    Deng Ju-Long. A Tutorial on Grey System Theory. Wuhan: Huazhong University of Science and Technology Press, 1990.
    [23] Wang J S, Wang W. A predictive model of sinter chemical composition and its application. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China: IEEE, 2006. 4856-4860
    [24] 张晓平, 赵珺, 王伟, 冯为民, 陈伟昌.转炉煤气柜位的多输出最小二乘支持向量机预测.控制理论与应用, 2010, 27(11): 1463-1470 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201011005.htm

    Zhang Xiao-Ping, Zhao Jun, Wang Wei, Feng Wei-Min, Chen Wei-Chang. Multi-output least squares support-vector-machine for level prediction in Linz Donaniz gas holder, Control Theory & Applications, 2010, 27(11): 1463-1470 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201011005.htm
    [25] 王伟, 吴敏, 雷琪, 曹卫华.炼焦生产过程综合生产指标的改进神经网络预测方法.控制理论与应用, 2009, 26(12): 1419-1424 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200912022.htm

    Wang Wei, Wu Min, Lei Qi, Cao Wei-Hua. An improved neural network method for the prediction of comprehensive production indices in coking process, Control Theory & Applications, 2009, 26(12): 1419-1424 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200912022.htm
    [26] 晏密英, 桂卫华, 阳春华.基于灰色关联和改进SVM的钴离子浓度预测研究.仪器仪表学报, 2011, 32(5): 961-967 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201105002.htm

    Yan Mi-Ying, Gui Wei-Hua, Yang Chun-Hua. Prediction on research on cobalt ion concentration based on gray correlation and improved support vector machine. Chinese Journal of Scientific Instrument, 2011, 32(5): 961-967 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201105002.htm
    [27] 李爱莲, 赵永明, 崔桂梅.基于灰色关联分析的ELM高炉温度预测模型.钢铁研究学报, 2015, 27(11): 33-37 http://www.cnki.com.cn/Article/CJFDTOTAL-IRON201511007.htm

    Li Ai-Lian, Zhao Yong-Ming, Cui Gui-Mei. Prediction model of blast furnace temperature based on ELM with grey correlation analysis. Journal of Iron and Steel Research, 2015, 27(11): 33-37 http://www.cnki.com.cn/Article/CJFDTOTAL-IRON201511007.htm
    [28] Gao C H, Jian L, Luo S H. Modeling of the thermal state change of blast furnace hearth with support vector machines. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1134-1145 doi: 10.1109/TIE.2011.2159693
    [29] Saxén H, Pettersson F. Nonlinear prediction of the hot metal silicon content in the blast furnace. ISIJ International, 2007, 47(12): 1732-1737 doi: 10.2355/isijinternational.47.1732
    [30] Nurkkala A, Pettersson F, Saxén H. Nonlinear modeling method applied to prediction of hot metal silicon in the ironmaking blast furnace. Industrial & Engineering Chemistry Research, 2011, 50(15): 9236-9248
    [31] Saxén H, Pettersson F, Gunturu K. Evolving nonlinear time-series models of the hot metal silicon content in the blast furnace. Materials and Manufacturing Processes, 2007, 22(5): 577-584 doi: 10.1080/10426910701322278
    [32] 侯忠生, 许建新.数据驱动控制理论及方法的回顾和展望.自动化学报, 2009, 35(6): 650-667 http://www.aas.net.cn/CN/abstract/abstract13327.shtml

    Hou Zhong-Sheng, Xu Jian-Xin. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica, 2009, 35(6): 650-667 http://www.aas.net.cn/CN/abstract/abstract13327.shtml
    [33] 史运涛, 杨震安, 李志军, 孙德辉, 刘大千.基于数据驱动的混杂系统建模与优化控制研究.系统仿真学报, 2013, 25(11): 2709-2716 http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201311033.htm

    Shi Yun-Tao, Yang Zhen-An, Li Zhi-Jun, Sun De-Hui, Liu Da-Qian. Method of hybrid system modeling and optimizing control based on data-driven. Journal of System Simulation, 2013, 25(11): 2709-2716 http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201311033.htm
    [34] 卜旭辉, 余发山, 侯忠生, 王福忠.一类线性离散切换系统的迭代学习控制(英文).自动化学报, 2013, 39(9): 1564-1569 http://www.aas.net.cn/CN/abstract/abstract18191.shtml

    Bu Xu-Hui, Yu Fa-Shan, Hou Zhong-Sheng, Wang Fu-Zhong. Iterative learning control for a class of linear discrete-time switched systems. Acta Automatica Sinica, 2013, 39(9): 1564-1569 http://www.aas.net.cn/CN/abstract/abstract18191.shtml
    [35] 侯忠生, 董航瑞, 金尚泰.基于坐标补偿的自动泊车系统无模型自适应控制.自动化学报, 2015, 41(4): 823-831 http://www.aas.net.cn/CN/abstract/abstract18656.shtml

    Hou Zhong-Sheng, Dong Hang-Rui, Jin Shang-Tai. Model-free adaptive control with coordinates compensation for automatic car parking systems. Acta Automatica Sinica, 2015, 41(4): 823-831 http://www.aas.net.cn/CN/abstract/abstract18656.shtml
    [36] 王康, 李晓理, 贾超, 宋桂芝.基于自适应动态规划的矿渣微粉生产过程跟踪控制.自动化学报, 2016, 42(10): 1542-1551 http://www.aas.net.cn/CN/abstract/abstract18941.shtml

    Wang Kang, Li Xiao-Li, Jia Chao, Song Gui-Zhi. Optimal tracking control for slag grinding process based on adaptive dynamic programming. Acta Automatica Sinica, 2016, 42(10): 1542-1551 http://www.aas.net.cn/CN/abstract/abstract18941.shtml
    [37] Wang B, Fang Y, Sheng J F, Gui W H, Sun Y. BTP prediction model based on ANN and regression analysis. In: Proceedings of the 2nd International Workshop on Knowledge Discovery and Data Mining. Moscow, Russia: IEEE, 2009. 108-111
    [38] Nakhaei F, Mosavi M R, Sam A, Vaghei Y. Recovery and grade accurate prediction of pilot plant flotation column concentrate: neural network and statistical techniques. International Journal of Mineral Processing, 2012, 110-111: 140-154 doi: 10.1016/j.minpro.2012.03.003
    [39] Nakhaei F, Sam A, Mosavi M R, Zeidabadi S. Prediction of copper grade at flotation column concentrate using Artificial Neural Network. In: Proceedings of the 10th IEEE International Conference on Signal Processing (ICSP). Beijing, China: IEEE, 2010. 1421-1424
    [40] Er M J, Liao J, Lin J Y. Fuzzy neural networks-based quality prediction system for sintering process. IEEE Transactions on Fuzzy Systems, 2000, 8(3): 314-324 doi: 10.1109/91.855919
    [41] Jian L, Gao C H, Li L, Zeng J S. Application of least squares support vector machines to predict the silicon content in blast furnace hot metal. ISIJ International, 2008, 48(11): 1659-1661 doi: 10.2355/isijinternational.48.1659
    [42] Jiang S L, Liu M, Lin J H, Zhong H X. A prediction-based online soft scheduling algorithm for the real-world steelmaking-continuous casting production. Knowledge-Based Systems, 2016, 111: 159-172 doi: 10.1016/j.knosys.2016.08.010
    [43] Bhattacharya T. Prediction of silicon content in blast furnace hot metal using partial least squares (PLS). ISIJ International, 2005, 45(12): 1943-1945 doi: 10.2355/isijinternational.45.1943
    [44] Chen J. A predictive system for blast furnaces by integrating a neural network with qualitative analysis. Engineering Applications of Artificial Intelligence, 2001, 14(1): 77-85 doi: 10.1016/S0952-1976(00)00062-2
    [45] Rath S, Singh A P, Bhaskar U, Krishna B, Santra B K, Rai D, Neogi N. Artificial neural network modeling for prediction of roll force during plate rolling process. Materials and Manufacturing Processes, 2010, 25(1-3): 149-153 doi: 10.1080/10426910903158249
    [46] Haghani A, Khoogar A R, Kumarci F. Predicting strip tearing in cold rolling tandem mill using neural network. International Journal of Advanced Design and Manufacturing Technology, 2015, 8(1): 67-75 http://en.journals.sid.ir/JournalListPaper.aspx?ID=203655
    [47] Jian L, Gao C H. Binary coding SVMs for the multiclass problem of blast furnace system. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3846-3856 doi: 10.1109/TIE.2012.2206336
    [48] Vanlaer J, Gins G, Van Impe J F M. Quality assessment of a variance estimator for partial least squares prediction of batch-end quality. Computers & Chemical Engineering, 2013, 52(52): 230-239 https://www.researchgate.net/publication/256938094_Quality_assessment_of_a_variance_estimator_for_Partial_Least_Squares_prediction_of_batch-end_quality
    [49] 宋海鹰, 桂卫华, 阳春华, 彭小奇.基于核偏最小二乘法的动态预测模型在铜转炉吹炼中的应用.中国有色金属学报, 2007, 17(7): 1201-1206 http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200707031.htm

    Song Hai-Ying, Gui Wei-Hua, Yang Chun-Hua, Peng Xiao-Qi. Application of dynamical prediction model based on kernel partial least squares for copper converting. The Chinese Journal of Nonferrous Metals, 2007, 17(7): 1201-1206 http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200707031.htm
    [50] Gao C H, Chen J M, Zeng J S, Liu X Y, Sun Y X. A chaos-based iterated multistep predictor for blast furnace ironmaking process. AIChE Journal, 2009, 55(4): 947-962 doi: 10.1002/aic.v55:4
    [51] Liu C X, Ding J L, Chai T Y. Robust prediction for quality of industrial processes. In: Proceedings of 2014 IEEE International Conference on Information and Automation (ICIA). Hailar, China: IEEE, 2014. 1172-1175
    [52] Sossan F, Namor E, Cherkaoui R, Paolone M. Achieving the dispatchability of distribution feeders through prosumers data driven forecasting and model predictive control of electrochemical storage. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1762-1777 doi: 10.1109/TSTE.2016.2600103
    [53] 熊伟, 李兵, 陈军, 周华昱.一种基于预测控制的SaaS系统自适应方法.计算机学报, 2016, 39(2): 364-376 doi: 10.11897/SP.J.1016.2016.00364

    Xiong Wei, Li Bing, Chen Jun, Zhou Hua-Yu. A self-adaptation approach based on predictive control for SaaS. Chinese Journal of Computers, 2016, 39(2): 364-376 doi: 10.11897/SP.J.1016.2016.00364
    [54] Reese B M, Collins Jr E G. A graph search and neural network approach to adaptive nonlinear model predictive control. Engineering Applications of Artificial Intelligence, 2016, 55: 250-268 doi: 10.1016/j.engappai.2016.07.001
    [55] Han H G, Zhang L, Hou Y, Qiao J F. Nonlinear model predictive control based on a self-organizing recurrent neural network. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(2): 402-415 doi: 10.1109/TNNLS.2015.2465174
    [56] Feng K, Lu J G, Chen J S. Nonlinear model predictive control based on support vector machine and genetic algorithm. Chinese Journal of Chemical Engineering, 2015, 23(12): 2048-2052 doi: 10.1016/j.cjche.2015.10.009
    [57] Ekkachai K, Nilkhamhang I. Swing phase control of semi-active prosthetic knee using neural network predictive control with particle swarm optimization. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(11): 1169-1178 doi: 10.1109/TNSRE.2016.2521686
    [58] Wang D C, Lin H. A new class of dual support vector machine NPID controller used for predictive control. IEEJ Transactions on Electrical and Electronic Engineering, 2015, 10(4): 453-457 doi: 10.1002/tee.2015.10.issue-4
    [59] Pedrycz W, Chen S M. Information Granularity, Big Data, and Computational Intelligence. Switzerland: Springer International Publishing, 2015.
    [60] Zhou Z, Xu Z W, Wu W B. Long-term prediction intervals of time series. IEEE Transactions on Information Theory, 2010, 56(3): 1436-1446 doi: 10.1109/TIT.2009.2039158
    [61] Tang X Y, Zhao J, Sheng C Y, Wang W. Long term prediction for generation amount of Converter gas based on steelmaking production status estimation. In: Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Beijing, China: IEEE, 2014. 1088-1095
    [62] Dong R J, Pedrycz W. A granular time series approach to long-term forecasting and trend forecasting. Physica A: Statistical Mechanics and Its Applications, 2008, 387(13): 3253-3270 doi: 10.1016/j.physa.2008.01.095
    [63] Zhao J, Han Z Y, Pedrycz W, Wang W. Granular model of long-term prediction for energy system in steel industry. IEEE Transactions on Cybernetics, 2016, 46(2): 388-400 doi: 10.1109/TCYB.2015.2445918
    [64] Han Z Y, Zhao J, Wang W, Liu Y. A two-stage method for predicting and scheduling energy in an oxygen/nitrogen system of the steel industry. Control Engineering Practice, 2016, 52: 35-45 doi: 10.1016/j.conengprac.2016.03.018
    [65] Han Z Y, Liu Y, Zhao J, Wang W. Real time prediction for converter gas tank levels based on multi-output least square support vector regressor. Control Engineering Practice, 2012, 20(12): 1400-1409 doi: 10.1016/j.conengprac.2012.08.006
    [66] Han Z Y, Zhao J, Liu Q L, Wang W. Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels. Information Sciences, 2016, 330: 175-185 doi: 10.1016/j.ins.2015.10.020
    [67] 周平, 李瑞峰, 郭东伟, 王宏, 柴天佑.高炉炼铁过程多元铁水质量指标多输出支持向量回归建模.控制理论与应用, 2016, 33(6): 727-734 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201606003.htm

    Zhou Ping, Li Rui-Feng, Guo Dong-Wei, Wang Hong, Chai Tian-You. Multi-output support vector regression modeling for multivariate molten iron quality indices in blast furnace iron making process. Control Theory & Applications, 2016, 33(6): 727-734 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201606003.htm
    [68] 阳春华, 聂晓凯, 柴琴琴, 桂卫华.氧化铝蒸发浓度的自适应加权LSSVR预测.控制工程, 2012, 19(2): 187-190 http://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201202002.htm

    Yang Chun-Hua, Nie Xiao-Kui, Chai Qin-Qin, Gui Wei-Hua. Alumina evaporation concentration prediction based on adaptive weighted LS-SVR. Control Engineering of China, 2012, 19(2): 187-190 http://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201202002.htm
    [69] 盛春阳, 赵珺, 王伟, 刘颖.基于T-S模型的高炉煤气系统模糊建模.上海交通大学学报, 2012, 46(12): 1907-1913 http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201212007.htm

    Sheng Chun-Yang, Zhao Jun, Wang Wei, Liu Ying. A fuzzy modeling method based on T-S model for blast furnace gas system. Journal of Shanghai Jiaotong University, 2012, 46(12): 1907-1913 http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201212007.htm
    [70] 宋贺达, 周平, 王宏, 柴天佑.高炉炼铁过程多元铁水质量非线性子空间建模及应用.自动化学报, 2016, 42(11): 1664-1679 http://www.aas.net.cn/CN/abstract/abstract18956.shtml

    Song He-Da, Zhou Ping, Wang Hong, Chai Tian-You. Nonlinear subspace modeling of multivariate molten iron quality in blast furnace ironmaking and its application. Acta Automatica Sinica, 2016, 42(11): 1664-1679 http://www.aas.net.cn/CN/abstract/abstract18956.shtml
    [71] Martín R D, Obeso F, Mochón J, Barea R, Jiménez J. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools. Ironmaking & Steelmaking, 2007, 34(3): 241-247 https://www.researchgate.net/publication/233664007_Hot_metal_temperature_prediction_in_blast_furnace_using_advanced_model_based_on_fuzzy_logic_tools
    [72] 刘长鑫, 丁进良, 姜波, 柴天佑.选矿过程精矿品位自适应在线支持向量预测方法.控制理论与应用, 2014, 31(3): 386-391 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201403015.htm

    Liu Chang-Xin, Ding Jin-Liang, Jiang Bo, Chai Tian-You. Adaptive online support vector regression prediction model for concentrate grade of the ore-dressing processes. Control Theory & Applications, 2014, 31(3): 386-391 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201403015.htm
    [73] 王凌云, 桂卫华, 刘梅花, 阳春华.基于改进在线支持向量回归的离子浓度预测模型.控制与决策, 2009, 24(4): 537-541 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200904012.htm

    Wang Ling-Yun, Gui Wei-Hua, Liu Mei-Hua, Yang Chun-Hua. Prediction model of ion concentration based on improved online support vector regression. Control and Decision, 2009, 24(4): 537-541 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200904012.htm
    [74] Liu C X, Ding J L, Toprac A J, Chai T Y. Data-based adaptive online prediction model for plant-wide production indices. Knowledge and Information Systems, 2014, 41(2): 401-421 doi: 10.1007/s10115-014-0757-8
    [75] Zhao J, Wang W, Pedrycz W, Tian X W. Online parameter optimization-based prediction for converter gas system by parallel strategies. IEEE Transactions on Control Systems Technology, 2012, 20(3): 835-845 doi: 10.1109/TCST.2011.2134098
    [76] Ding J L, Chai T Y, Cheng W J, Zheng X P. Data-based multiple-model prediction of the production rate for hematite ore beneficiation process. Control Engineering Practice, 2015, 45: 219-229 doi: 10.1016/j.conengprac.2015.08.015
    [77] 晏密英, 桂卫华, 阳春华.基于智能融合策略的钴离子浓度预测模型.控制与决策, 2011, 26(5): 707-711 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201105011.htm

    Yan Mi-Ying, Gui Wei-Hua, Yang Chun-Hua. Prediction model of cobalt ion concentration based on intelligent fusion strategy. Control and Decision, 2011, 26(5): 707-711 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201105011.htm
    [78] Sheng C Y, Zhao J, Wang W, Leung H. Prediction intervals for a noisy nonlinear time series based on a bootstrapping reservoir computing network ensemble. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(7): 1036-1048 doi: 10.1109/TNNLS.2013.2250299
    [79] 蒋朝辉, 董梦林, 桂卫华, 阳春华, 谢永芳.基于Bootstrap的高炉铁水硅含量二维预报.自动化学报, 2016, 42(5): 715-723 http://www.aas.net.cn/CN/abstract/abstract18861.shtml

    Jiang Zhao-Hui, Dong Meng-Lin, Gui Wei-Hua, Yang Chun-Hua, Xie Yong-Fang. Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap. Acta Automatica Sinica, 2016, 42(5): 715-723 http://www.aas.net.cn/CN/abstract/abstract18861.shtml
    [80] 熊富强, 桂卫华, 阳春华.针铁矿法沉铁过程铁离子浓度集成预测模型.控制与决策, 2012, 27(3): 329-334 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201203003.htm

    Xiong Fu-Qiang, Gui Wei-Hua, Yang Chun-Hua. Integrated prediction model of iron concentration in goethite method to remove iron process. Control and Decision, 2012, 27(3): 329-334 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201203003.htm
    [81] 刘颖, 赵珺, 王伟, 吴毅平, 陈伟昌.基于数据的改进回声状态网络在高炉煤气发生量预测中的应用.自动化学报, 2009, 35(6): 731-738 http://www.aas.net.cn/CN/abstract/abstract13337.shtml

    Liu Ying, Zhao Jun, Wang Wei, Wu Yi-Ping, Chen Wei-Chang. Improved echo state network based on data-driven and its application to prediction of blast furnace gas output. Acta Automatica Sinica, 2009, 35(6): 731-738 http://www.aas.net.cn/CN/abstract/abstract13337.shtml
    [82] Chen L, Liu Y, Zhao J, Wang W, Liu Q L. Prediction intervals for industrial data with incomplete input using kernel-based dynamic Bayesian networks. Artificial Intelligence Review, 2016, 46(3): 307-326 doi: 10.1007/s10462-016-9465-y
    [83] Liu Y, Liu Q L, Wang W, Zhao J, Leung H. Data-driven based model for flow prediction of steam system in steel industry. Information Sciences, 2012, 193: 104-114 doi: 10.1016/j.ins.2011.12.031
    [84] 谢世文, 谢永芳, 阳春华, 蒋朝辉, 桂卫华.针铁矿法沉铁过程亚铁离子浓度预测.自动化学报, 2014, 40(5): 830-837 http://www.aas.net.cn/CN/abstract/abstract18351.shtml

    Xie Shi-Wen, Xie Yong-Fang, Yang Chun-Hua, Jiang Zhao-Hui, Gui Wei-Hua. A ferrous iron concentration prediction model for the process of iron precipitation by goethite. Acta Automatica Sinica, 2014, 40(5): 830-837 http://www.aas.net.cn/CN/abstract/abstract18351.shtml
    [85] Xie Y F, Xie S W, Chen X F, Gui W H, Yang C H, Caccetta L. An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy. Hydrometallurgy, 2015, 151: 62-72 doi: 10.1016/j.hydromet.2014.11.004
    [86] 吴志伟, 柴天佑, 吴永建.电熔镁砂产品单吨能耗混合预报模型.自动化学报, 2013, 39(12): 2002-2011 http://www.aas.net.cn/CN/abstract/abstract18239.shtml

    Wu Zhi-Wei, Chai Tian-You, Wu Yong-Jian. A hybrid prediction model of energy consumption per ton for fused magnesia. Acta Automatica Sinica, 2013, 39(12): 2002-2011 http://www.aas.net.cn/CN/abstract/abstract18239.shtml
    [87] Sun B, Gui W H, Wu T B, Wang Y L, Yang C H. An integrated prediction model of cobalt ion concentration based on oxidation-reduction potential. Hydrometallurgy, 2013, 140: 102-110 doi: 10.1016/j.hydromet.2013.09.015
    [88] Yang C H, Gui W H, Kong L S, Wang Y L. Modeling and optimal-setting control of blending process in a metallurgical industry. Computers & Chemical Engineering, 2009, 33(7): 1289-1297 https://www.researchgate.net/publication/220341604_Modeling_and_optimal-setting_control_of_blending_process_in_a_metallurgical_industry
    [89] Chen J, Chandrashekhara K, Mahimkar C, Lekakh S N, Richards V L. Void closure prediction in cold rolling using finite element analysis and neural network. Journal of Materials Processing Technology, 2011, 211(2): 245-255 doi: 10.1016/j.jmatprotec.2010.09.016
    [90] Lin J C. Prediction of rolling force and deformation in three-dimensional cold rolling by using the finite-element method and a neural network. The International Journal of Advanced Manufacturing Technology, 2002, 20(11): 799-806 doi: 10.1007/s001700200219
    [91] Nelson A W, Malik A S, Wendel J C, Zipf M E. Probabilistic force prediction in cold sheet rolling by Bayesian inference. Journal of Manufacturing Science and Engineering, 2014, 136(4): Article No. 041006 https://www.researchgate.net/publication/274874419_Probabilistic_Force_Prediction_in_Cold_Sheet_Rolling_by_Bayesian_Inference
    [92] Rath S, Sengupta P P, Singh A P, Marik A K, Talukdar P. Mathematical-artificial neural network hybrid model to predict roll force during hot rolling of steel. International Journal of Computational Materials Science and Engineering, 2013, 2(1): Article No.1350004 doi: 10.1142/S2047684113500048
    [93] Zhao J, Liu Q L, Pedrycz W, Li D X. Effective noise estimation-based online prediction for byproduct gas system in steel industry. IEEE Transactions on Industrial Informatics, 2012, 8(4): 953-963 doi: 10.1109/TII.2012.2205932
    [94] 赵珺, 杜雅楠, 盛春阳, 王伟.基于核的冶金煤气流量在线区间预测.控制理论与应用, 2013, 30(10): 1274-1280 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201310008.htm

    Zhao Jun, Du Ya-Nan, Sheng Chun-Yang, Wang Wei. Kernel-based method for predicting online gas flow interval in metallurgical enterprises. Control Theory & Applications, 2013, 30(10): 1274-1280 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201310008.htm
    [95] Ding J L, Chai T Y, Wang H. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization. IEEE Transactions on Neural Networks, 2011, 22(3): 408-419 doi: 10.1109/TNN.2010.2102362
    [96] 张晓平, 赵珺, 王伟, 丛力群, 冯为民, 陈伟昌.基于最小二乘支持向量机的焦炉煤气柜位预测模型及应用.控制与决策, 2010, 25(8): 1178-1183 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201008013.htm

    Zhang Xiao-Ping, Zhao Jun, Wang Wei, Cong Li-Qun, Feng Wei-Min, Chen Wei-Chang. COG holder level prediction model based on least square support vector machine and its application. Control and Decision, 2010, 25(8): 1178-1183 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201008013.htm
    [97] Zhang X P, Zhao J, Wang W, Cong L Q, Feng W M. An optimal method for prediction and adjustment on byproduct gas holder in steel industry. Expert Systems with Applications, 2011, 38(4): 4588-4599 doi: 10.1016/j.eswa.2010.09.132
    [98] Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995, 4: 1942-1948
    [99] Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.
    [100] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220(4598): 671-680 doi: 10.1126/science.220.4598.671
    [101] 唐贤伦, 庄陵, 胡向东.铁水硅含量的混沌粒子群支持向量机预报方法.控制理论与应用, 2009, 26(8): 838-842 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200908005.htm

    Tang Xian-Lun, Zhuang Ling, Hu Xiang-Dong. The support vector regression based on the chaos particle swarm optimization algorithm for the prediction of silicon content in hot metal. Control Theory & Applications, 2009, 26(8): 838-842 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200908005.htm
    [102] Tang X L, Zhuang L, Jiang C J. Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization. Expert Systems with Applications, 2009, 36(9): 11853-11857 doi: 10.1016/j.eswa.2009.04.015
    [103] 刘建华, 桂卫华, 谢永芳, 王雅琳, 蒋朝辉.基于投影寻踪回归的铜闪速熔炼过程关键工艺指标预测.中国有色金属学报, 2012, 22(11): 3255-3260 http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201211039.htm

    Liu Jian-Hua, Gui Wei-Hua, Xie Yong-Fang, Wang Ya-Lin, Jiang Zhao-Hui. Key process indicators predicting for copper flash smelting process based on projection pursuit regression. The Chinese Journal of Nonferrous Metals, 2012, 22(11): 3255-3260 http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201211039.htm
    [104] Hatami S, Ghaderi-Ardakani A, Niknejad-Khomami M, Karimi-Malekabadi F, Rasaei M R, Mohammadi A H. On the prediction of CO2 corrosion in petroleum industry. The Journal of Supercritical Fluids, 2016, 117: 108-112 doi: 10.1016/j.supflu.2016.05.047
    [105] Längkvist M, Karlsson L, Loutfi A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 2014, 42: 11-24 doi: 10.1016/j.patrec.2014.01.008
    [106] Dalto M. Deep neural networks for time series prediction with applications in ultra-short-term wind forecasting. In: Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT). Seville, Spain: IEEE, 2015. 1657-1663
    [107] Hirata T, Kuremoto T, Obayashi M, Mabu S, Kobayashi K. A novel approach to time series forecasting using deep learning and linear model. IEEJ Transactions on Electronics Information and Systems, 2016, 136(3): 348-356 doi: 10.1541/ieejeiss.136.348
    [108] Hirata T, Kuremoto T, Obayashi M, Mabu S, Kobayashi K. Deep belief network using reinforcement learning and its applications to time series forecasting. In: Proceedings of the 23rd International Conference on Neural Information Processing. Kyoto, Japan: Springer, 2016. 30-37
    [109] Torregrossa D, Boudec J Y L, Paolone M. Model-free computation of ultra-short-term prediction intervals of solar irradiance. Solar Energy, 2016, 124: 57-67 doi: 10.1016/j.solener.2015.11.017
    [110] Runge J, Donner R V, Kurths J. Optimal model-free prediction from multivariate time series. Physical Review E, 2015, 91(5): Article No.052909
    [111] 桂卫华, 陈晓方, 阳春华, 谢永芳.知识自动化及工业应用.中国科学:信息科学, 2016, 46(8): 1016-1034 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608006.htm

    Gui Wei-Hua, Chen Xiao-Fang, Yang Chun-Hua, Xie Yong-Fang. Knowledge automation and its industrial application. Scientia Sinica: Informationis, 2016, 46(8): 1016-1034 http://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201608006.htm
    [112] Wu S F V, Hsieh N, Lin L J, Tsai J M. Prediction of self-care behaviour on the basis of knowledge about chronic kidney disease using self-efficacy as a mediator. Journal of Clinical Nursing, 2016, 25(17-18): 2609-2618 doi: 10.1111/jocn.2016.25.issue-17pt18
    [113] Waardenberg A J, Homan B, Mohamed S, Harvey R P, Bouveret R. Prediction and validation of protein-protein interactors from genome-wide DNA-binding data using a knowledge-based machine-learning approach. Open Biology, 2016, 6(9): Article No.160183. doi: 10.1098/rsob.160183
    [114] 翟敬梅, 应灿, 徐晓.知识建模和数据挖掘融合的粗糙度预测新方法.计算机集成制造系统, 2012, 18(5): 1046-1053 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201205024.htm

    Zhai Jing-Mei, Ying Can, Xu Xiao. Surface roughness prediction of integration knowledge modeling into date mining. Computer Integrated Manufacturing Systems, 2012, 18(5): 1046-1053 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201205024.htm
    [115] 王康, 李晓理, 贾超, 宋桂芝.基于自适应动态规划的矿渣微粉生产过程跟踪控制.自动化学报, 2016, 42(10): 1542-1551 http://www.aas.net.cn/CN/abstract/abstract18941.shtml

    Wang Kang, Li Xiao-Li, Jia Chao, Song Gui-Zhi. Optimal tracking control for slag grinding process based on adaptive dynamic programming. Acta Automatica Sinica, 2016, 42(10): 1542-1551 http://www.aas.net.cn/CN/abstract/abstract18941.shtml
    [116] Luo X, Lv Y X, Li R X, Chen Y. Web service QoS prediction based on adaptive dynamic programming using fuzzy neural networks for cloud services. IEEE Access, 2015, 3: 2260-2269 doi: 10.1109/ACCESS.2015.2498191
    [117] 张志刚, 马光文, 叶伟宝, 张军良.基于自适应动态规划的系统边际电价预测.计算机工程, 2009, 35(5): 9-11 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200905007.htm

    Zhang Zhi-Gang, Ma Guang-Wen, Ye Wei-Bao, Zhang Jun-Liang. System marginal price forecasting based on adaptive dynamic programming. Computer Engineering, 2009, 35(5): 9-11 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200905007.htm
  • 加载中
图(1)
计量
  • 文章访问数:  2715
  • HTML全文浏览量:  817
  • PDF下载量:  1792
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-13
  • 录用日期:  2017-05-06
  • 刊出日期:  2017-06-20

目录

    /

    返回文章
    返回