2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应块组割先验的噪声图像超分辨率重建

李滔 何小海 卿粼波 滕奇志

李滔, 何小海, 卿粼波, 滕奇志. 基于自适应块组割先验的噪声图像超分辨率重建. 自动化学报, 2017, 43(5): 765-777. doi: 10.16383/j.aas.2017.c160268
引用本文: 李滔, 何小海, 卿粼波, 滕奇志. 基于自适应块组割先验的噪声图像超分辨率重建. 自动化学报, 2017, 43(5): 765-777. doi: 10.16383/j.aas.2017.c160268
LI Tao, HE Xiao-Hai, QING Lin-Bo, TENG Qi-Zhi. Noisy Image Super-resolution Reconstruction with Adaptive Patch-group-cuts Prior. ACTA AUTOMATICA SINICA, 2017, 43(5): 765-777. doi: 10.16383/j.aas.2017.c160268
Citation: LI Tao, HE Xiao-Hai, QING Lin-Bo, TENG Qi-Zhi. Noisy Image Super-resolution Reconstruction with Adaptive Patch-group-cuts Prior. ACTA AUTOMATICA SINICA, 2017, 43(5): 765-777. doi: 10.16383/j.aas.2017.c160268

基于自适应块组割先验的噪声图像超分辨率重建

doi: 10.16383/j.aas.2017.c160268
基金项目: 

国家自然科学基金 61471248

详细信息
    作者简介:

    李滔 四川大学电子信息学院博士研究生.主要研究方向为图像超分辨率重建, 图像复原.E-mail:lucia634@163.com

    卿粼波 四川大学电子信息学院副教授.主要研究方向为图像压缩, 视频编码与传输, 信息理论.E-mail:qing_lb@scu.edu.cn

    滕奇志 四川大学电子信息学院教授.主要研究方向为图像处理, 图像通信, 模式识别, 软件工程.E-mail:qzteng@scu.edu.cn

    通讯作者:

    何小海 四川大学电子信息学院教授.主要研究方向为图像处理, 模式识别, 图像通信.E-mail:hxh@scu.edu.cn

Noisy Image Super-resolution Reconstruction with Adaptive Patch-group-cuts Prior

Funds: 

National Natural Science Foundation of China 61471248

More Information
    Author Bio:

    Ph. D. candidate at the College of Electronics and Information Engineering, Sichuan University. Her research interest covers image superresolution reconstruction and image restoration

    Associate professor at the College of Electronics and Information Engineering, Sichuan University. His research interest covers image compression, video coding and transmission, and information theory

    Professor at the College of Electronics and Information Engineering, Sichuan University. Her research interest covers image processing, image communication, pattern recognition, and software engineering

    Corresponding author: HE Xiao-Hai Professor at the College of Electronics and Information Engineering, Sichuan University. His research interest covers image processing, pattern recognition, and image communication. Corresponding author of this paper
  • 摘要: 要增强噪声图像的分辨率,传统的串联方式依次进行去噪与超分辨率重建两个步骤,但去噪算法去除噪声的同时也损失了部分细节信息,影响了后续超分辨率重建的质量.为了使低分辨率噪声图像中所有细节信息都能参与超分辨率重建,本文以非局部中心化稀疏表示(Nonlocally centralized sparse representation,NCSR)模型为基础,提出了基于自适应块组割(Patch-group-cuts,PGCuts)先验的噪声图像超分辨率重建方法,同时实现去噪和超分辨率重建功能.块组割先验基于新颖的三维邻域系统和块组模型,能够达到图像去噪、边缘平滑和边缘清晰等效果.重建时以边缘强度为参考对块组割先验进行自适应约束,由于块组割在平滑区域约束力较低,采用分区域融合的方式进一步抑制噪声.本文对合成的低分辨率噪声图像和真实的低分辨率噪声图像进行了重建实验,实验表明,基于自适应块组割先验的噪声图像超分辨率重建算法,在丰富细节的同时能抑制噪声的干扰,不但具有较高的峰值信噪比和结构相似度等客观评价值,而且在非光滑区域具有很好的主观重建效果.
    1)  本文责任编委 黄庆明
  • 图  1  图像Butterfly高分辨率去噪图像能量损失图及边缘强度图

    Fig.  1  The energy loss map and the edge strength map of the denoised HR image for image Butterfly

    图  2  三维邻域系统示例图

    Fig.  2  An example of the 3D neighborhood system

    图  3  块组示例图

    Fig.  3  A patch group defined on an example image

    图  4  曲面的平滑具有去噪功能

    Fig.  4  Smoothening surface can suppress edges noise

    图  5  不同噪声标准差的PSNR均值和SSIM均值

    Fig.  5  The average PSNR/SSIM values versus noise standard deviation for all the test images

    图  6  噪声图像Church超分辨率结果比较(括号内的数字分别表示PSNR和SSIM)

    Fig.  6  SR results of noisy LR image Church (PSNR and SSIM values are shown in bracket)

    图  7  噪声图像Butterfly超分辨率结果比较(括号内的数字分别表示PSNR和SSIM)

    Fig.  7  SR results of noisy LR image Butterfly (PSNR and SSIM values are shown in bracket)

    图  8  真实噪声图像fan超分辨率结果比较

    Fig.  8  SR results of real noisy LR image fan

    图  9  噪声图像超分辨率重建的性能与运行时间综合比较图$\left(\sigma=20, o=2\right)$

    Fig.  9  PSNR versus running time for different SR methods on noisy LR images $\left(\sigma=20, o=2\right)$

    表  1  噪声图像超分辨率重建结果比较(PSNR (dB))

    Table  1  PSNR (dB) comparison of different SR methods on noisy LR images

    标准差 算法 Sail Woman Racing Bridge Man Church Butterfly Lena Ppt Status Average
    15 Bicubic 28.36 27.43 25.17 25.32 25.18 27.16 23.29 27.48 23.27 25.76 25.84
    D + B 30.61 28.94 25.77 25.86 25.53 28.56 23.47 28.88 23.66 26.28 26.76
    D + Z 31.50 30.78 27.03 27.10 27.73 30.59 25.72 30.18 25.90 28.71 28.52
    Singh 31.58 30.82 27.05 27.14 27.89 30.66 25.81 30.24 25.91 28.71 28.58
    NCSR 31.64 31.58 27.50 27.61 29.42 32.04 27.75 30.42 27.52 29.46 29.49
    Proposed 32.01 31.83 27.78 27.74 29.52 32.65 27.90 30.64 28.43 29.63 29.81
    20 Bicubic 26.89 26.26 24.43 24.59 24.50 26.13 22.78 26.28 22.85 24.97 24.97
    D + B 30.32 28.67 25.55 25.61 25.19 28.38 23.23 28.57 23.54 25.94 26.50
    D + Z 31.03 30.27 26.65 26.69 27.04 30.23 25.21 29.65 25.64 27.97 28.04
    Singh 31.10 30.30 26.67 26.73 27.21 30.30 25.30 29.68 25.65 27.90 28.08
    NCSR 30.81 30.62 26.83 26.92 28.20 30.84 26.78 29.21 26.38 28.28 28.49
    Proposed 31.12 30.98 27.13 27.17 28.41 31.85 27.01 29.72 27.67 28.51 28.96
    25 Bicubic 25.53 25.14 23.63 23.81 23.79 25.08 22.22 25.13 22.36 24.15 24.08
    D + B 30.04 28.40 25.34 25.39 24.85 28.19 22.99 28.28 23.40 25.60 26.25
    D + Z 30.62 29.81 26.31 26.33 26.39 29.87 24.73 29.18 25.36 27.31 27.59
    Singh 30.64 29.83 26.31 26.37 26.58 29.92 24.82 29.19 25.37 27.20 27.62
    NCSR 29.71 29.77 26.20 26.28 27.05 29.78 25.95 28.29 25.48 27.35 27.59
    Proposed 30.72 30.34 26.63 26.72 27.47 31.00 26.33 29.11 26.80 27.90 28.30
    下载: 导出CSV

    表  2  噪声图像超分辨率重建结果比较(SSIM)

    Table  2  SSIM comparison of different SR methods on noisy LR images

    标准差 算法 Sail Woman Racing Bridge Man Church Butterfly Lena Ppt Status Average
    15 Bicubic 0.6101 0.6587 0.6102 0.6277 0.7203 0.6725 0.7225 0.6523 0.8180 0.7716 0.6864
    D + B 0.8475 0.8536 0.7028 0.7332 0.8572 0.8988 0.8122 0.8075 0.9380 0.8519 0.8303
    D + Z 0.8648 0.8728 0.7347 0.7704 0.8895 0.9173 0.8577 0.8297 0.9654 0.8870 0.8589
    Singh 0.8669 0.8729 0.7356 0.7724 0.8903 0.9175 0.8572 0.8300 0.9655 0.8838 0.8592
    NCSR 0.8653 0.8764 0.7448 0.7844 0.9083 0.9276 0.8898 0.8183 0.9742 0.8915 0.8681
    Proposed 0.8731 0.8816 0.7496 0.7867 0.9156 0.9333 0.8986 0.8311 0.9771 0.8975 0.8744
    20 Bicubic 0.5054 0.5656 0.5402 0.5584 0.6510 0.5781 0.6661 0.5659 0.7556 0.7138 0.6100
    D + B 0.8380 0.8449 0.6885 0.7179 0.8437 0.8948 0.7999 0.7951 0.9325 0.8393 0.8195
    D + Z 0.8515 0.8616 0.7165 0.7499 0.8717 0.9116 0.8415 0.8132 0.9590 0.8697 0.8446
    Singh 0.8522 0.8612 0.7171 0.7524 0.8718 0.9111 0.8393 0.8115 0.9590 0.8634 0.8439
    NCSR 0.8395 0.8590 0.7198 0.7567 0.8836 0.9144 0.8629 0.7743 0.9642 0.8637 0.8438
    Proposed 0.8558 0.8680 0.7285 0.7650 0.8936 0.9253 0.8785 0.8014 0.9690 0.8742 0.8559
    25 Bicubic 0.4197 0.4884 0.4774 0.4963 0.5917 0.4994 0.6162 0.4916 0.6973 0.6595 0.5437
    D + B 0.8294 0.8371 0.6767 0.7050 0.8304 0.8906 0.7878 0.7843 0.9262 0.8266 0.8094
    D + Z 0.8397 0.8519 0.7011 0.7330 0.8543 0.9053 0.8257 0.7994 0.9520 0.8542 0.8317
    Singh 0.8364 0.8507 0.7012 0.7354 0.8540 0.9034 0.8222 0.7957 0.9519 0.8451 0.8296
    NCSR 0.8118 0.8423 0.6969 0.7318 0.8576 0.9002 0.8371 0.7387 0.9536 0.8379 0.8208
    Proposed 0.8416 0.8577 0.7113 0.7463 0.8745 0.9156 0.8618 0.7837 0.9595 0.8598 0.8412
    下载: 导出CSV

    表  3  重建高分辨率图像SCM值比较$\left(\sigma=20\right)$

    Table  3  SCM comparison of the reconstructed HR image$\left(\sigma=20\right)$

    算法 Sail Woman Racing Bridge Man Church Butterfly Lena Ppt Status
    NCSR 1.35 1.92 2.62 2.51 4.08 2.00 5.96 2.46 3.50 5.24
    Proposed 1.09 1.71 2.27 2.22 3.80 1.79 5.46 2.08 3.19 4.94
    下载: 导出CSV

    表  4  噪声图像超分辨率重建运行时间(s)比较$\left(\sigma=20\right)$

    Table  4  Comparison of the running time (s) of different SR methods on noisy LR images $\left(\sigma=20\right)$

    图像 放大因子/尺寸 D+B D+Z Singh NCSR Proposed
    Man 2/320x480 0.5 1.3×10 0.5×102 0.6×103 1.4×103
    3/480×720 0.5 2.5×10 1.0×102 1.6×103 3.4×103
    4/640×960 0.5 6.4×10 2.1×102 2.9×103 6.1×103
    Butterfly 2/256×256 0.2 0.5×10 0.2×102 0.2×103 0.5×103
    3/384×384 0.2 1.0×10 0.4×102 0.5×103 1.3×103
    4/512×512 0.2 2.7×10 0.9×102 0.8×103 2.2×103
    Ppt 2/656×528 1.2 2.7×10 1.1×102 1.4×103 3.5×103
    3/984×792 1.2 5.5×10 2.1×102 3.8×103 8.4×103
    4/1312×1056 1.2 14.7×10 4.8×102 4.9×103 14.6×103
    Status 2/170×138 0.05 0.2×10 0.08×102 0.05×103 0.2×103
    3/255×207 0.05 0.4×10 0.13×102 0.16×103 0.5×103
    4/340×276 0.05 0.9×10 0.3×102 0.23×103 0.8×103
    下载: 导出CSV
  • [1] Li Y P, Huttenlocher D P. Sparse long-range random field and its application to image denoising. In: Proceeding of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 344-357
    [2] Roth S, Black M J. Fields of experts: a framework for learning image priors. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 860-867
    [3] Tappen M F. Utilizing variational optimization to learn Markov random fields. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
    [4] Nasri M, Nezamabadi-pour H. Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing, 2009, 72(4): 1012-1025 https://www.researchgate.net/publication/220549893_Image_denoising_in_the_wavelet_domain_using_a_new_adaptive_thresholding_function
    [5] Mihcak M K, Kozintsev I, Ramchandran K, Moulin P. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, 1999, 6(12): 300-303 doi: 10.1109/97.803428
    [6] Buades A, Coll B, Morel J-M. A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 60-65
    [7] Dabov K, Foi A, Katkovnik V, Egiazarian K. Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, USA: IEEE, 2007. I-313-I-316
    [8] Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095 doi: 10.1109/TIP.2007.901238
    [9] 张瑞, 冯象初, 王斯琪, 常莉红.基于稀疏梯度场的非局部图像去噪算法.自动化学报, 2015, 41(9): 1542-1552 http://www.aas.net.cn/CN/abstract/abstract18729.shtml

    Zhang Rui, Feng Xiang-Chu, Wang Si-Qi, Chang Li-Hong. A sparse gradients field based image denoising algorithm via non-local means. Acta Automatica Sinica, 2015, 41(9): 1542-1552 http://www.aas.net.cn/CN/abstract/abstract18729.shtml
    [10] Zhang X J, Wu X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Transactions on Image Processing, 2008, 17(6): 887-896 doi: 10.1109/TIP.2008.924279
    [11] Hung K-W, Siu W-C. Fast image interpolation using the bilateral filter. IET Image Processing, 2012, 6(7): 877-890 doi: 10.1049/iet-ipr.2011.0050
    [12] Zhang K B, Gao X B, Tao D C, Li X L. Single image super-resolution with non-local means and steering kernel regression. IEEE Transactions on Image Processing, 2012, 21(11): 4544-4556 doi: 10.1109/TIP.2012.2208977
    [13] Yan Q, Xu Y, Yang X K, Nguyen T Q. Single image superresolution based on gradient profile sharpness. IEEE Transactions on Image Processing, 2015, 24(10): 3187-3202 doi: 10.1109/TIP.2015.2414877
    [14] Dai S Y, Han M, Xu W, Wu Y, Gong Y H, Katsaggelos A K. Softcuts: a soft edge smoothness prior for color image super-resolution. IEEE Transactions on Image Processing, 2009, 18(5): 969-981 doi: 10.1109/TIP.2009.2012908
    [15] Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations. In: Proceedings of the 7th International Conference on Curves and Surfaces. Avignon, France: Springer, 2012. 711-730
    [16] Peleg T, Elad M. A statistical prediction model based on sparse representations for single image super-resolution. IEEE Transactions on Image Processing, 2014, 23(6): 2569-2582 doi: 10.1109/TIP.2014.2305844
    [17] Jia K, Wang X G, Tang X O. Image transformation based on learning dictionaries across image spaces. IEEE transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 367-380 doi: 10.1109/TPAMI.2012.95
    [18] 李民, 程建, 乐翔, 李小文.基于联合稀疏近似的彩色图像超分辨率重建.光电子·激光, 2011, 22(8): 1241-1245 http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201108028.htm

    Li Min, Cheng Jian, Le Xiang, Li Xiao-Wen. Super-resolution reconstruction for color images based on simultaneous sparse approximation. Journal of Optoelectronics · Laser, 2011, 22(8): 1241-1245 http://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201108028.htm
    [19] Singh A, Porikli F, Ahuja N. Super-resolving noisy images. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 2846-2853
    [20] Dong W S, Zhang L, Shi G M, Li X. Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 2013, 22(4): 1620-1630 doi: 10.1109/TIP.2012.2235847
    [21] Zhang Y Q, Liu J Y, Yang W H, Guo Z M. Image super-resolution based on structure-modulated sparse representation. IEEE Transactions on Image Processing, 2015, 24(9): 2797-2810 doi: 10.1109/TIP.2015.2431435
    [22] Li T, He X H, Teng Q Z, Wang Z Y, Ren C. Space-time super-resolution with patch group cuts prior. Signal Processing: Image Communication, 2015, 30: 147-165 doi: 10.1016/j.image.2014.10.007
    [23] Boykov Y, Kolmogorov V. Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of the 2003 IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 26-33
    [24] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239 doi: 10.1109/34.969114
    [25] Candés E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5-6): 877-905 doi: 10.1007/s00041-008-9045-x
    [26] 韩雨, 王卫卫, 冯象初.基于迭代重加权的非刚性图像配准.自动化学报, 2011, 37(9): 1059-1066 http://www.aas.net.cn/CN/abstract/abstract17529.shtml

    Han Yu, Wang Wei-Wei, Feng Xiang-Chu. Iteratively reweighted method based nonrigid image registration. Acta Automatica Sinica, 2011, 37(9): 1059-1066 http://www.aas.net.cn/CN/abstract/abstract17529.shtml
    [27] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457 doi: 10.1002/(ISSN)1097-0312
    [28] 范文茹, 王化祥, 郝魁红.基于两步迭代TV正则化的电阻抗图像重建算法.仪器仪表学报, 2012, 33(3): 625-630 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201203021.htm

    Fan Wen-Ru, Wang Hua-Xiang, Hao Kui-Hong. Two-step iterative TV regularization algorithm for image reconstruction of electrical impedance tomography. Chinese Journal of Scientific Instrument, 2012, 33(3): 625-630 http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201203021.htm
    [29] Irani M, Peleg S. Motion analysis for image enhancement: resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation, 1993, 4(4): 324-335 doi: 10.1006/jvci.1993.1030
    [30] Dai S Y, Han M, Xu W, Wu Y, Gong Y H. Soft edge smoothness prior for alpha channel super resolution. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  2305
  • HTML全文浏览量:  240
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-15
  • 录用日期:  2016-08-23
  • 刊出日期:  2017-05-01

目录

    /

    返回文章
    返回