-
摘要: 图像超分辨率复原(Super resolution restoration,SR)技术是图像处理领域的研究热点,在视频监控、图像处理、刑侦分析等领域具有广泛的应用需求.近年来,深度学习在多媒体处理领域迅猛发展,基于深度学习的图像超分辨率复原技术已逐渐成为主流技术.本文主要对现有基于深度学习的图像超分辨率复原工作进行综述.从网络类型、网络结构、训练方法等方面分析现有技术的优势与不足,对其发展脉络进行梳理.在此基础上,本文进一步指出了基于深度学习的图像超分辨率复原技术的未来发展方向.Abstract: Super resolution image restoration technology is a hot field of image processing in the field of video surveillance, image processing, forensic analysis, with a wide range of application requirements. In recent years, the rapid development of deep learning in the field of multimedia processing, deep learning based super-resolution images restoration has gradually become a mainstream technology. This paper reviews the existing deep learning based image super-resolution restoration work. In terms of network type, network structure, and training methods, the advantages and disadvantages of the prior art are analyzed and the development contexts are sorted out. On this basis, the paper further points out the future direction of the restoration technique based on deep learning of the super-resolution image.1) 本文责任编委 王亮
-
表 1 各类基于前馈深度网络的超分辨率算法比较表
Table 1 Comparison of different feed-forward deep network-based super-resolution algorithms
表 2 各类基于反馈深度网络的超分辨率算法比较表
Table 2 Comparison of different feed-back deep network-based super-resolution algorithms
表 3 各类基于双向深度网络的超分辨率算法比较表
Table 3 Comparison of different bi-directional deep network-based super-resolution algorithms
表 4 Set5、Set14和BSD100数据集, 不同SR算法重建效果比较(PSNR)
Table 4 Comparison of reconstructed images with various SR methods (PSNR), on Set5, Set14, BSD100 benchmark data
数据集 放大倍数 ANR[48] A+[49] SRCNN[30] VDSR[31] DRCN[43] SCN[37] IA[50] JOR[51] DEGREE[44] Set5 ×3 31.92 32.59 32.75 33.66 33.82 33.10 33.46 32.55 33.39 Set5 ×4 29.69 30.28 30.48 31.35 31.53 30.86 31.10 30.19 31.03 Set14 ×3 28.65 29.13 29.28 29.77 29.76 29.41 29.69 29.09 29.61 Set14 ×4 26.85 27.32 27.49 28.01 28.02 27.64 27.88 27.26 27.73 BSD100 ×3 27.89 28.29 28.29 28.82 28.80 28.50 28.76 28.17 28.63 BSD100 ×4 26.51 26.82 26.84 27.29 27.23 27.03 27.25 26.74 27.07 -
[1] 卓力, 王素玉, 李晓光.图像/视频的超分辨率复原.北京:人民邮电出版社, 2011. 349Zhuo Li, Wang Su-Yu, Li Xiao-Guang. Image/Video Super Resolution. Beijing: The People's Posts and Telecommunications Press, 2011. 349 [2] 张晓玲. 遥感图像的压缩和超分辨率复原技术研究[博士学位论文], 北京工业大学, 中国, 2006.Zhang Xiao-Ling. Research on compression and super resolution of remote sensing imagery [Ph.D. dissertation], Beijing University of Technology, China, 2006. [3] Baker S, Kanade T. Limits on super-resolution and how to break them. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA: IEEE, 2000, 2: 372-379 [4] Van Ouwerkerk J D. Image super-resolution survey. Image and Vision Computing, 2006, 24(10): 1039-1052 doi: 10.1016/j.imavis.2006.02.026 [5] 苏衡, 周杰, 张志浩.超分辨率图像重建方法综述.自动化学报, 2013, 39(8): 1202-1213 http://www.aas.net.cn/CN/abstract/abstract18151.shtmlSu Heng, Zhou Jie, Zhang Zhi-Hao. Survey of super-resolution image reconstruction methods. Acta Automatica Sinica, 2013, 39(8): 1202-1213 http://www.aas.net.cn/CN/abstract/abstract18151.shtml [6] Harris J L. Diffraction and resolving power. Journal of the Optical Society of America, 1964, 54(7): 931-936 doi: 10.1364/JOSA.54.000931 [7] Goodman J W. Introduction to Fourier Optics. San Francisco: McGraw-Hill, 1968. [8] Tsai R Y, Huang T S. Multiple frame image restoration and registration. In: Advances in Computer Vision and Image Processing. Greenwich, CT, England: JAI Press, 1984. 317-339 [9] Aly H, Dubois E. Regularized image up-sampling using a new observation model and the level set method. In: Proceedings of the 2003 International Conference on Image Processing. Barcelona, Spain: IEEE, 2003, 2: Article No.Ⅲ-665-8 [10] Aly H A, Dubois E. Image up-sampling using total-variation regularization with a new observation model. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659 doi: 10.1109/TIP.2005.851684 [11] Zhang X L, Lam K M, Shen L S. Image magnification based on a blockwise adaptive Markov random field model. Image and Vision Computing, 2008, 26(9): 1277-1284 doi: 10.1016/j.imavis.2008.03.003 [12] Chantas G K, Galatsanos N P, Woods N A. Super-resolution based on fast registration and maximum a posteriori reconstruction. IEEE Transactions on Image Processing, 2007, 16(7): 1821-1830 doi: 10.1109/TIP.2007.896664 [13] Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Transactions on Image Processing, 1997, 6(12): 1621-1633 doi: 10.1109/83.650116 [14] Protter M, Elad M. Super resolution with probabilistic motion estimation. IEEE Transactions on Image Processing, 2009, 18(8): 1899-1904 doi: 10.1109/TIP.2009.2022440 [15] Hu H, Kondi L P. A regularization framework for joint blur estimation and super-resolution of video sequences. In: Proceedings of the 2005 IEEE International Conference on Image Processing. Genoa, Italy: IEEE, 2005. Article No.Ⅲ-329-32 [16] 李晓光, 李风慧, 卓力.高分辨率与高动态范围图像联合重建研究进展.测控技术, 2012, 31(5): 8-12 http://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201205004.htmLi Xiao-Guang, Li Feng-Hui, Zhuo Li. Research on High Resolution and High Dynamic Range Image Reconstruction. Measurement & Control Technology, 2012, 31(5): 8-12 http://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201205004.htm [17] Baker S, Kanade T. Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183 doi: 10.1109/TPAMI.2002.1033210 [18] Freeman W T, Pasztor E C, Carmichael O T. Learning low-level vision. International Journal of Computer Vision, 2000, 40(1): 25-47 doi: 10.1023/A:1026501619075 [19] Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65 doi: 10.1109/38.988747 [20] Li X G, Lam K M, Qiu G P, Shen L S, Wang S Y. Example-based image super-resolution with class-specific predictors. Journal of Visual Communication and Image Representation, 2009, 20(5): 312-322 doi: 10.1016/j.jvcir.2009.03.008 [21] Su C Y, Zhuang Y T, Li H, Wu F. Steerable pyramid-based face hallucination. Pattern Recognition, 2005, 38(6): 813-824 doi: 10.1016/j.patcog.2004.11.007 [22] Jiji C V, Chaudhuri S. Single-frame image super-resolution through contourlet learning. EURASIP Journal on Advances in Signal Processing, 2006, 2006: Article No.073767 https://www.researchgate.net/publication/27356019_Single-Frame_Image_Super-resolution_through_Contourlet_Learning/fulltext/0e605abaf0c46d4f0ab4581d/27356019_Single-Frame_Image_Super-resolution_through_Contourlet_Learning.pdf [23] Chang H, Yeung D Y, Xiong Y M. Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 275-282 [24] Chan T M, Zhang J P, Pu J, Huang H. Neighbor embedding based super-resolution algorithm through edge detection and feature selection. Pattern Recognition Letters, 2009, 30(5): 494-502 doi: 10.1016/j.patrec.2008.11.008 [25] Yang J C, Wright J, Huang T, Ma Y. Image super-resolution as sparse representation of raw image patches. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE, 2008. 1-8 [26] Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873 doi: 10.1109/TIP.2010.2050625 [27] Yang C Y, Ma C, Yang M H. Single-image super-resolution: a benchmark. In: Proceedings of ECCV 2014 Conference on Computer Vision. Cham, Switzerland: Springer, 2014. 372-386 [28] Schmidhuber J. Deep learning in neural networks: an overview. Neural Networks, 2015, 61: 85-117 doi: 10.1016/j.neunet.2014.09.003 [29] 胡传平, 钟雪霞, 梅林, 邵杰, 王建, 何莹.基于深度学习的图像超分辨率算法研究.铁道警察学院学报, 2016, 26(1): 5-10 http://www.cnki.com.cn/Article/CJFDTOTAL-TDBG201601001.htmHu Chuan-Ping, Zhong Xue-Xia, Mei Lin, Shao Jie, Wang Jian, He Ying. The research on super-resolution method using deep learning. Journal of Railway Police College, 2016, 26(1): 5-10 http://www.cnki.com.cn/Article/CJFDTOTAL-TDBG201601001.htm [30] Dong C, Loy C C, He K M, Tang X O. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307 doi: 10.1109/TPAMI.2015.2439281 [31] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 1646-1654 [32] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2015. [33] Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on Machine Learning. Atlanta, GA, USA: International Machine Learning Society, 2013. 2347-2355 [34] 潘宗序, 禹晶, 肖创柏, 孙卫东.基于多尺度非局部约束的单幅图像超分辨率算法.自动化学报, 2014, 40(10): 2233-2244 http://www.aas.net.cn/CN/abstract/abstract18498.shtmlPan Zong-Xu, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Single-image super-resolution algorithm based on multi-scale nonlocal regularization. Acta Automatica Sinica, 2014, 40(10): 2233-2244 http://www.aas.net.cn/CN/abstract/abstract18498.shtml [35] He K M, Zhang X Y, Ren S Q, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916 doi: 10.1109/TPAMI.2015.2389824 [36] Liang Y, Wang J J, Zhou S P, Gong Y H, Zheng N N. Incorporating image priors with deep convolutional neural networks for image super-resolution. Neurocomputing, 2016, 194: 340-347 doi: 10.1016/j.neucom.2016.02.046 [37] Wang Z W, Liu D, Yang J C, Han W, Huang T. Deep networks for image super-resolution with sparse prior. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 370-378 [38] Gregor K, Lecun Y. Learning fast approximations of sparse coding. In: Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: International Machine Learning Society, 2010. 399-406 [39] Gu S H, Zuo W M, Xie Q, Meng D Y, Feng X C, Zhang L. Convolutional sparse coding for image super-resolution. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1823-1831 [40] Zhong L W, Kwok J T. Fast stochastic alternating direction method of multipliers. In: Proceedings of the 31st International Conference on Machine Learning. Beijing, China: International Machine Learning Society, 2014. 78-86 [41] Tian J, Ma K K. A survey on super-resolution imaging. Signal, Image and Video Processing, 2011, 5(3): 329-342 doi: 10.1007/s11760-010-0204-6 [42] Krishnan D, Fergus R. Fast image deconvolution using hyper-laplacian priors. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems. Vancouver, BC, Canada: NIPS, 2009. 1033-1041 [43] Kim J, Lee J K, Lee K M. Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 1637-1645 [44] Yang W H, Feng J S, Yang J C, Zhao F, Liu J Y, Guo Z M, Yan S C. Deep edge guided recurrent residual learning for image super-resolution. ArXiv: 1604.08671, 2016. [45] Gao J B, Guo Y, Yin M. Restricted Boltzmann machine approach to couple dictionary training for image super-resolution. In: Proceedings of the 20th IEEE International Conference on Image Processing (ICIP). Melbourne, VIC, Australia: IEEE, 2013. 499-503 [46] Nakashika T, Takiguchi T, Ariki Y. High-frequency restoration using deep belief nets for super-resolution. In: Proceedings of the 9th International Conference on Signal-Image Technology & Internet-Based Systems. Kyoto, Japan: IEEE, 2013. 38-42 [47] Cui Z, Chang H, Shan S G, Zhong B N, Chen X L. Deep network cascade for image super-resolution. In: Proceedings of the 13th European Conference on Computer Vision-ECCV 2014. Cham, Switzerland: Springer, 2014. 49-64 [48] Timofte R, De V, Van Gool L. Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the 14th IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia: IEEE, 2013. 1920-1927 [49] Timofte R, De Smet V, Van Gool L. A+: adjusted anchored neighborhood regression for fast super-resolution. In: Proceedings of the 12th Asian Conference on Computer Vision. Cham, Switzerland: Springer, 2015. 111-126 [50] Timofte R, Rothe R, Van Gool L. Seven ways to improve example-based single image super resolution. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 1865-1873 [51] Dai D, Timofte R, Van Gool L. Jointly optimized regressors for image super-resolution. Computer Graphics Forum, 2015, 34(2): 95-104 doi: 10.1111/cgf.2015.34.issue-2 [52] 徐冉, 张俊格, 黄凯奇.利用双通道卷积神经网络的图像超分辨率算法.中国图象图形学报, 2016, 21(5): 556-564 doi: 10.11834/jig.20160503Xu Ran, Zhang Jun-Ge, Huang Kai-Qi. Image super-resolution using two-channel convolutional neural networks. Journal of Image and Graphics, 2016, 21(5): 556-564 doi: 10.11834/jig.20160503 [53] 刘娜, 李翠华.基于多层卷积神经网络学习的单帧图像超分辨率重建方法.中国科技论文, 2015, 10(2): 201-206 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201502017.htmLiu Na, Li Cui-Hua. Single image super-resolution reconstruction via deep convolutional neural network. China Sciencepaper, 2015, 10(2): 201-206 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201502017.htm [54] Nazzal M, Ozkaramanli H. Wavelet domain dictionary learning-based single image superresolution. Signal, Image and Video Processing, 2015, 9(7): 1491-1501 doi: 10.1007/s11760-013-0602-7