2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

均方根嵌入式容积粒子PHD多目标跟踪方法

熊志刚 黄树彩 赵炜 苑智玮 徐晨洋

熊志刚, 黄树彩, 赵炜, 苑智玮, 徐晨洋. 均方根嵌入式容积粒子PHD多目标跟踪方法. 自动化学报, 2017, 43(2): 238-247. doi: 10.16383/j.aas.2017.c150881
引用本文: 熊志刚, 黄树彩, 赵炜, 苑智玮, 徐晨洋. 均方根嵌入式容积粒子PHD多目标跟踪方法. 自动化学报, 2017, 43(2): 238-247. doi: 10.16383/j.aas.2017.c150881
XIONG Zhi-Gang, HUANG Shu-Cai, ZHAO Wei, YUAN Zhi-Wei, XU Chen-Yang. Square-root Imbedded Cubature Particle PHD Multi-target Tracking Algorithm. ACTA AUTOMATICA SINICA, 2017, 43(2): 238-247. doi: 10.16383/j.aas.2017.c150881
Citation: XIONG Zhi-Gang, HUANG Shu-Cai, ZHAO Wei, YUAN Zhi-Wei, XU Chen-Yang. Square-root Imbedded Cubature Particle PHD Multi-target Tracking Algorithm. ACTA AUTOMATICA SINICA, 2017, 43(2): 238-247. doi: 10.16383/j.aas.2017.c150881

均方根嵌入式容积粒子PHD多目标跟踪方法

doi: 10.16383/j.aas.2017.c150881
基金项目: 

国家自然科学基金 61503408

国家自然科学基金 61573374

陕西省自然科学基础研究计划 2012JM8020

航空科学基金 20130196004

详细信息
    作者简介:

    黄树彩 空军工程大学防空反导学院教授.2005年获得空军工程大学博士学位.主要研究方向为空天协同目标跟踪与拦截引导.E-mail:hsc67118@126.com

    赵炜 空军工程大学防空反导学院博士研究生.2014年获得空军工程大学硕士学位.主要研究方向为系统仿真, 目标跟踪与检测.E-mail:shnxshdny@163.com

    苑智玮 空军工程大学防空反导学院硕士研究生.2014年获得长春理工大学学士学位.主要研究方向为红外目标检测与跟踪, 系统辨识.E-mail:YuanzhiweiSachiel@163.com

    徐晨洋 空军工程大学防空反导学院博士研究生.2016年获得空军工程大学硕士学位.主要研究方向为拦截系统建模与仿真.E-mail:15686057693@163.com

    通讯作者:

    熊志刚 空军工程大学防空反导学院博士研究生.2016年获得空军工程大学硕士学位.主要研究方向为空天协同目标跟踪.本文通信作者.E-mail:xiongzgzm@163.com

Square-root Imbedded Cubature Particle PHD Multi-target Tracking Algorithm

Funds: 

National Natural Science Foundation of China 61503408

National Natural Science Foundation of China 61573374

Natural Science Basic Research Plan in Shaanxi Province of China 2012JM8020

Aeronautical Science Foundation of China 20130196004

More Information
    Author Bio:

    Professor at the Air and Missile Defense College, Air Force Engineering University. He received his Ph. D. degree from Air Force Engineering University in 2005. His research interest covers aerospace cooperative target tracking and interception cueing

    Ph. D. candidate at the Air and Missile Defense College, Air Force Engineering University. He received his master degree from Air Force Engineering University in 2014. His research interest covers system modeling and simulation, target tracking and detection

    Master student at the Air and Missile Defense College, Air Force Engineering University. He received his bachelor degree from Changchun University of Science and Technology in 2014. His research interest covers infrared target tracking and detection, and system identification

    Ph. D. candidate at the Air and Missile Defense College, Air Force Engineering University. He received his master degree from Air Force Engineering University in 2016. His research interest covers interception system modeling and simulation

    Corresponding author: XIONG Zhi-Gang Ph. D. candidate at the Air and Missile Defense College, Air Force Engineering University. He received his master degree from Air Force Engineering University in 2016. His main research interest is aerospace cooperative target tracking. Corresponding author of this paper
  • 摘要: 针对基于概率假设密度算法(Probability hypothesis density,PHD)的非线性多目标跟踪精度低、滤波发散等问题,提出了一种新的PHD算法——改进的均方根嵌入式容积粒子PHD算法(Advanced square-root imbedded cubature particle PHD,ASRICP-PHD).新的算法在初始化采样时将整个采样区域等概率划分为若干个区域,然后利用既定的准则从每个区域抽取粒子,并利用均方根嵌入式容积滤波方法对每个粒子进行滤波,来拟合重要密度函数,预测和更新多目标状态的PHD.仿真结果表明该算法能对多目标进行有效跟踪,相比拟随机采样法和伪随机采样,等概率采样的方法在多目标位置估计和数目估计上有更高的精度.
    1)  本文责任编委 赖剑煌
  • 图  1  误差比较( $N = 1 000$ )

    Fig.  1  Comparison of error ( $N = 1 000$ )

    图  2  误差比较( $N = 20 000$ )

    Fig.  2  Comparison of error ( $N = 20 000$ )

    图  3  目标数目估计比较( $q = 0.1,{\lambda _k} = 5; {\rm CV}$ )

    Fig.  3  Comparison of number estimation ( $q = 0.1,{\lambda _k} = 5; {\rm CV}$

    图  4  OSPA比较( $q = 0.1,{\lambda _k} = 5; {\rm CV}$ )

    Fig.  4  Comparison of OSPA ( $q = 0.1,{\lambda _k} = 5; {\rm CV}$

    图  5  单步运行时间比较( $q = 0.1,{\lambda _k} = 5; {\rm CV}$ )

    Fig.  5  Comparison of step time ( $q = 0.1,{\lambda _k} = 5; {\rm CV}$ )

    图  6  目标数目估计比较( $q = 1,{\lambda _k} = 5; {\rm CV}$ )

    Fig.  6  Comparison of number estimation ( $q = 1,{\lambda _k} = 5; {\rm CV}$ )

    图  7  OSPA比较( $q = 1,{\lambda _k} = 5; {\rm CV}$ )

    Fig.  7  Comparison of OSPA ( $q = 1,{\lambda _k} = 5; {\rm CV}$ )

    图  8  单步运行时间比较( $q = 1,{\lambda _k} = 5; {\rm CV}$ )

    Fig.  8  Comparison of step time ( $q = 1,{\lambda _k} = 5; {\rm CV}$ )

    图  9  目标数目估计比较( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    Fig.  9  Comparison of number estimation ( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    图  10  OSPA比较( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    Fig.  10  Comparison of OSPA ( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    图  11  单步运行时间比较( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    Fig.  11  Comparison of step time ( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    图  12  目标数目估计比较( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    Fig.  12  Comparison of number estimation ( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    图  13  OSPA比较( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    Fig.  13  Comparison of OSPA ( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    图  14  单步运行时间比较( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    Fig.  14  Comparison of step time ( $q = 3,{\lambda _k} = 10; {\rm CT}$ )

    表  1  初始化目标运动参数

    Table  1  Motion parameters initialization

    目标 位置(m) 速度(m·s-1) t0 (s) tf (s)
    1 (-250, 250) (5, -5) 1 45
    2 (-250, -250) (5, 5) 1 50
    3 (-160, 160) (7, -9) 17 50
    4 (-160, -160) (9, 7) 27 50
    下载: 导出CSV

    表  2  $P_f$ 分析( $offset = 40\,{\rm {m}}; {\rm CV}$ )

    Table  2  Analysis of $P_f$ ( $offset = 40\,{\rm {m}}; {\rm CV}$ )

    采样手段 失败次数 仿真次数 Pf
    QRS 20 60 0.334
    EPS (N=96) 8 60 0.134
    EPS (N=200) 3 60 0.05
    PRS 35 60 0.584
    下载: 导出CSV

    表  3  $P_f$ 分析( $offset = 100\,{\rm {m}}; {\rm CT}$ )

    Table  3  Analysis of $P_f$ ( $offset = 100\,{\rm {m}}; {\rm CT}$ )

    算法 失败次数 仿真次数 Pf
    ASRICP-PHD 17 60 0.28
    ASRCP-PHD 32 60 0.502
    HSRUP-PHD 50 60 0.83
    SRGHP-PHD 55 60 0.916
    下载: 导出CSV
  • [1] Li B, Pang F W. Improved probability hypothesis density filter for multitarget tracking. Nonlinear Dynamics, 2014, 76(1):367-376 doi: 10.1007/s11071-013-1131-1
    [2] 占荣辉, 刘盛启, 欧建平, 张军.基于序贯蒙特卡罗概率假设密度滤波的多目标检测前跟踪改进算法.电子与信息学报, 2014, 36(11):2593-2599 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201411009.htm

    Zhan Rong-Hui, Liu Sheng-Qi, Ou Jian-Ping, Zhang Jun. Improved multitarget track before detect algorithm using the sequential Monte Carlo probability hypothesis density filter. Journal of Electronics & Information Technology, 2014, 36(11):2593-2599 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201411009.htm
    [3] Xu L L, Ökten G. High-performance financial simulation using randomized quasi-Monte Carlo methods. Quantitative Finance, 2015, 15(8):1425-1436 doi: 10.1080/14697688.2015.1032549
    [4] Guo D, Wang X D. Quasi-Monte Carlo filtering in nonlinear dynamic systems. IEEE Transactions on Signal Processing, 2006, 54(6):2087-2098 doi: 10.1109/TSP.2006.873585
    [5] 杨金龙, 姬红兵, 刘进忙.高斯厄米特粒子PHD被动测角多目标跟踪算法.系统工程与电子技术, 2013, 35(3):457-462 http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201303003.htm

    Yang Jin-Long, Ji Hong-Bin, Liu Jin-Mang. Gauss-Hermite particle PHD filter for bearings-only multi-target tracking. Systems Engineering and Electronics, 2013, 35(3):457-462 http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201303003.htm
    [6] 王华剑, 景占荣.基于容积原则的概率假设密度滤波算法.北京理工大学学报, 2014, 34(12):1304-1309 http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201412018.htm

    Wang Hua-Jian, Jing Zhan-Rong. Probability hypothesis density filter based on cubature rule and its application to multi-target tracking. Transactions of Beijing Institute of Technology, 2014, 34(12):1304-1309 http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201412018.htm
    [7] 占荣辉, 张军.非线性滤波理论与目标跟踪应用.北京:国防工业出版社, 2013.

    Zhan Rong-Hui, Zhang Jun. Nonlinear Filtering Theory with Target Tracking Application. Beijing:National Defend Industry Press, 2013.
    [8] Zhang X C. Cubature information filters using high-degree and embedded cubature rules. Circuits, Systems, and Signal Processing, 2014, 33(6):1799-1818 doi: 10.1007/s00034-013-9730-0
    [9] 连峰, 韩崇昭, 李晨.多模型GM-CBMeMBer滤波器及航迹形成.自动化学报, 2014, 40(2):336-347 http://www.aas.net.cn/CN/abstract/abstract18295.shtml

    Lian Feng, Han Chong-Zhao, Li Chen. Multiple-model GM-CBMeMBer filter and track continuity. Acta Automatica Sinica, 2014, 40(2):336-347 http://www.aas.net.cn/CN/abstract/abstract18295.shtml
    [10] 李翠芸, 江舟, 姬红兵, 曹潇男.基于拟蒙特卡罗的未知杂波GMP-PHD滤波器.控制与决策, 2014, 29(11):1997-2001 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201411015.htm

    Li Cui-Yun, Jiang Zhou, Ji Hong-Bin, Cao Xiao-Nan. GMP-PHD filter based on quasi-Monte Carlo in unknown clutter. Control and Decision, 2014, 29(11):1997-2001 http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201411015.htm
    [11] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1152-1178 doi: 10.1109/TAES.2003.1261119
    [12] Wang Y, Meng H D, Liu Y M, Wang X Q. Collaborative penalized Gaussian mixture PHD tracker for close target tracking. Signal Processing, 2014, 102:1-15 doi: 10.1016/j.sigpro.2014.01.034
    [13] 张鑫春, 郭承军.均方根嵌入式容积卡尔曼滤波.控制理论与应用, 2013, 30(9):1116-1121 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201309007.htm

    Zhang Xin-Chun, Guo Cheng-Jun. Square-root imbedded cubature Kalman filtering. Control Theory & Applications, 2013, 30(9):1116-1121 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201309007.htm
    [14] Wang X, Hickernell F J. Randomized Halton sequences. Mathematical and Computer Modelling, 2000, 32(7-8):887-899 doi: 10.1016/S0895-7177(00)00178-3
    [15] Grewal M S, Andrew A P. Kalman Filtering:Theory and Practice Using MATLAB. Hoboken, N.J.:John Wiley & Sons, 2008.
    [16] 杨峰, 王永齐, 梁彦, 潘泉.基于概率假设密度滤波方法的多目标跟踪技术综述.自动化学报, 2013, 39(11):1944-1956 doi: 10.3724/SP.J.1004.2013.01944

    Yang Feng, Wang Yong-Qi, Liang Yan, Pan Quan. A survey of PHD filter based multi-target tracking. Acta Automatica Sinica, 2013, 39(11):1944-1956 doi: 10.3724/SP.J.1004.2013.01944
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  2656
  • HTML全文浏览量:  247
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-30
  • 录用日期:  2016-06-12
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回