2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分层向量自回归的多通道脑电信号的特征提取研究

王金甲 陈春

王金甲, 陈春. 分层向量自回归的多通道脑电信号的特征提取研究. 自动化学报, 2016, 42(8): 1215-1226. doi: 10.16383/j.aas.2016.c150461
引用本文: 王金甲, 陈春. 分层向量自回归的多通道脑电信号的特征提取研究. 自动化学报, 2016, 42(8): 1215-1226. doi: 10.16383/j.aas.2016.c150461
WANG Jin-Jia, CHEN Chun. Multi-channel EEG Feature Extraction Using Hierarchical Vector Autoregression. ACTA AUTOMATICA SINICA, 2016, 42(8): 1215-1226. doi: 10.16383/j.aas.2016.c150461
Citation: WANG Jin-Jia, CHEN Chun. Multi-channel EEG Feature Extraction Using Hierarchical Vector Autoregression. ACTA AUTOMATICA SINICA, 2016, 42(8): 1215-1226. doi: 10.16383/j.aas.2016.c150461

分层向量自回归的多通道脑电信号的特征提取研究

doi: 10.16383/j.aas.2016.c150461
基金项目: 

河北省博士后专项基金 B2014010005

中国博士后科学基金 2014M561202

国家自然科学基金 61473339

首批“河北省青年拔尖人才”项目 [2013]17

详细信息
    作者简介:

    陈春 燕山大学信息科学与工程学院硕士研究生.主要研究方向为信号处理.E-mail:xkz1124357698@sina.cn

    通讯作者:

    王金甲 燕山大学信息科学与工程学院教授.主要研究方向为信号处理和模式识别.E-mail:wjj@ysu.edu.cn

Multi-channel EEG Feature Extraction Using Hierarchical Vector Autoregression

Funds: 

Hebei Province Postdoctoral Special Foundation B2014010005

China Postdoctoral Science Foundation 2014M561202

National Natural Science Foundation of China 61473339

Hebei Province Top Young Talents [2013]17

More Information
    Author Bio:

    Master student at the School of Information Science and Engineering, Yanshan University. Her main research interest is signal processing.E-mail:

    Corresponding author: WANG Jin-Jia Professor at the School of Information Science and Engineering, Yanshan University. His research interest covers signal processing and pattern recognition. Corresponding author of this paper.E-mail:wjj@ysu.edu.cn
  • 摘要: 有效的特征提取方法能提高脑机接口(Brain-computer interface,BCI)系统对脑电(Electroencephalogram,EEG)信号的识别率.因脑电信号都是多通道的,本文将分层向量自回归(Hierarchical vector autoregression,HVAR)模型用于脑电信号的特征提取,并结合传统的线性支持向量机(Support vector machine,SVM)用于脑电信号识别.该模型不仅克服了自回归(Autoregression,AR)模型只能用来提取单通道特征的局限性,而且不再采用传统VAR(Vector autoregression)模型所有通道共用一个时滞的处理方法.创新之处在于在传统的VAR模型基础上添加正则化思想,有效地压缩参数空间,实现合理的分层结构.本文首次将HVAR模型用于由Keirn等采集并整理的脑电数据中.实验结果证明HVAR模型在阶数较小的情况下(2阶)与阶数较大(6阶)的AR模型效果相当,可见低阶的HVAR能很好地刻画脑电信号的时空关联关系,这说明HVAR可能是刻画EEG信号的一种新颖的方法,这对其他多通道时间序列分析都有借鉴意义.
  • 图  1  ${\rm{LASSO}}-{\rm{VA}}{{\rm{R}}_2}(4)$ 得到的稀疏模式示例图

    Fig.  1  The sparse pattern for ${\rm{LASSO}}-{\rm{VA}}{{\rm{R}}_2}(4)$

    图  2  ${\rm{HVAR}}{{\rm{C}}_{\rm{3}}}(4)$ 的分层时滞结构示例图

    Fig.  2  A componentwise hierarchical lag structure: ${\rm{HVAR}}{{\rm{C}}_{\rm{3}}}(4)$

    图  3  ${\rm{HVAR}}{{\rm{O}}_{\rm{3}}}(4)$ 的分层时滞结构示例图

    Fig.  3  An own-other hierarchical lag structure: ${\rm{HVAR}}{{\rm{O}}_{\rm{3}}}(4)$

    图  4  ${\rm{HVAR}}{{\rm{E}}_{\rm{3}}}(4)$ 的分层时滞结构示例图

    Fig.  4  An elementwise hierarchical lag structure: ${\rm{HVAR}}{{\rm{E}}_{\rm{3}}}(4)$

    图  5  采样电极放置图

    Fig.  5  Electrode placement

    图  6  受试者1的分类任务6个通道的多元时序图

    Fig.  6  The sequence diagram of each channel for Subject 1

    图  7  第5 种任务组合方式对应的不同方法的正确率箱线图

    Fig.  7  The boxplot of the fifth task combination fordifferent methods

    图  8  第3 种任务组合方式对应的不同方法的正确率箱线图

    Fig.  8  The boxplot of the third task combination fordifferent methods

    图  9  不同受试者的分类结果

    Fig.  9  The results for all subjects

    图  10  阶数为 6 时不同方法的分类结果箱线图

    Fig.  10  The boxplots of all methods using six order for allsubjects

    表  1  受试者的样本数

    Table  1  Trails of subjects

    受试者样本数
    110
    25
    310
    410
    515
    610
    75
    下载: 导出CSV

    表  2  任务组合方式

    Table  2  Patterns of task combinations

    任务编号组合方式任务编号组合方式
    1基准、乘法计算6乘法计算、几何图旋转
    2基准、字母组合7乘法计算、视觉计算
    3基准、几何图旋转8字母组合、几何图旋转
    4基准、视觉计算9字母组合、视觉计算
    5乘法计算、字母组合10几何图旋转、视觉计算
    下载: 导出CSV

    表  3  VAR模型不同时滞的平均正确率

    Table  3  Average accuracy rate using VAR model with differentorder

    12345678910
    20.830.730.850.850.810.910.840.770.740.78
    30.790.740.810.820.800.880.800.730.730.75
    40.750.750.800.820.800.860.800.710.710.70
    50.730.710.780.780.810.860.770.700.650.70
    60.730.720.750.760.780.840.760.680.680.69
    70.710.670.710.730.770.810.720.650.650.65
    下载: 导出CSV

    表  4  LASSO-VAR模型不同时滞的平均正确率

    Table  4  Average accuracy rate using LASSO-VAR model with different order

    12345678910
    20.790.700.830.790.810.880.830.700.720.67
    30.800.730.790.800.800.860.780.650.650.65
    40.790.730.820.790.780.850.760.650.630.64
    50.770.690.790.760.760.830.710.670.610.64
    60.760.710.780.730.750.840.750.660.620.63
    70.760.660.760.730.730.840.750.630.580.61
    下载: 导出CSV

    表  5  HVARC模型不同时滞的平均正确率

    Table  5  Average accuracy rate using HVARC model with different order

    12345678910
    20.820.730.850.800.860.900.840.730.700.70
    30.810.750.820.840.840.900.840.700.680.69
    40.800.760.840.820.830.890.820.690.660.68
    50.780.730.810.790.850.870.780.690.640.64
    60.800.730.810.790.820.880.810.700.650.66
    70.780.730.810.790.800.870.810.670.630.66
    下载: 导出CSV

    表  6  HVARO模型不同时滞的平均正确率

    Table  6  Average accuracy rate using HVARO model with different order

    12345678910
    20.810.720.840.810.840.900.860.710.720.72
    30.820.760.830.820.850.910.830.690.690.69
    40.820.740.840.800.830.880.820.670.680.67
    50.810.710.820.810.830.870.820.670.640.65
    60.810.720.810.790.810.870.820.670.670.66
    70.790.710.810.800.810.870.820.650.620.64
    下载: 导出CSV

    表  7  HVARE模型不同时滞的平均正确率

    Table  7  Average accuracy rate using HVARE model with different order

    12345678910
    20.790.700.830.800.820.870.830.690.710.68
    30.770.720.800.820.810.870.790.640.680.69
    40.780.730.800.800.790.860.770.650.650.64
    50.780.710.780.790.800.850.750.660.640.64
    60.780.710.760.790.800.850.770.680.640.66
    70.780.680.760.800.760.860.770.640.640.65
    下载: 导出CSV

    表  8  不同特征提取方法的结果总结

    Table  8  Summary of classification results for all subjects

    AR-BGVARLASSO-VARHVARCHVAROHVARE
    平均值0.780.810.770.790.790.77
    最大值0.830.910.880.910.900.87
    最佳任务乘法计算、乘法计算、乘法计算、乘法计算、乘法计算、乘法计算、
    1组合方式几何图旋转几何图旋转几何图旋转几何图旋转几何图旋转几何图旋转
    平均值0.740.730.670.680.690.67
    最大值0.890.820.760.740.770.76
    最佳任务字母组合、字母组合、字母组合、字母组合、字母组合、字母组合、
    2组合方式视觉计算视觉计算视觉计算视觉计算视觉计算视觉计算
    平均值0.670.730.680.710.700.68
    最大值0.770.840.780.820.770.81
    最佳任务字母组合、几何图旋转、几何图旋转、几何图旋转、字母组合、几何图旋转、
    3组合方式几何图旋转视觉计算视觉计算视觉计算几何图旋转视觉计算
    平均值0.770.820.750.770.780.75
    最大值0.930.910.860.890.910.86
    最佳任务乘法计算、乘法计算、乘法计算、乘法计算、乘法计算、乘法计算、
    4组合方式视觉计算视觉计算视觉计算视觉计算视觉计算视觉计算
    下载: 导出CSV
  • [1] 王行愚, 金晶, 张宇, 王蓓. 脑控:基于脑——机接口的人机融合控制. 自动化学报, 2013, 39(3):208-221 doi: 10.1016/S1874-1029(13)60023-3

    Wang Xing-Yu, Jin Jing, Zhang Yu, Wang Bei. Brain control:human-computer integration control based on brain-computer interface. Acta Automatica Sinica, 2013, 39(3):208-221 doi: 10.1016/S1874-1029(13)60023-3
    [2] 伏云发, 王越超, 李洪谊, 徐保磊, 李永程. 直接脑控机器人接口技术. 自动化学报, 2012, 38(8):1229-1246 doi: 10.3724/SP.J.1004.2012.01229

    Fu Yun-Fa, Wang Yue-Chao, Li Hong-Yi, Xu Bao-Lei, Li Yong-Cheng. Direct brain-controlled robot interface technology. Acta Automatica Sinica, 2012, 38(8):1229-1246 doi: 10.3724/SP.J.1004.2012.01229
    [3] McFarland D J, Wolpaw J R. Brain-computer interfaces for communication and control. Communications of the ACM, 2011, 54(5):60-66 doi: 10.1145/1941487
    [4] Yang B H, Yan G Z, Yan R G, Wu T. Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition. Medical Engineering & Physics, 2007, 29(1):48-53 http://cn.bing.com/academic/profile?id=2153925452&encoded=0&v=paper_preview&mkt=zh-cn
    [5] Shannon M, Zen H, Byrne W. Autoregressive models for statistical parametric speech synthesis. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(3):587-597 doi: 10.1109/TASL.2012.2227740
    [6] 孙会文, 伏云发, 熊馨, 杨俊, 刘传伟, 余正涛. 基于HHT运动想象脑电模式识别研究. 自动化学报, 2015, 41(9):1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml

    Sun Hui-Wen, Fu Yun-Fa, Xiong Xin, Yang Jun, Liu Chuan-Wei, Yu Zheng-Tao. Identification of EEG induced by motor imagery based on Hilbert-Huang transform. Acta Automatica Sinica, 2015, 41(9):1686-1692 http://www.aas.net.cn/CN/abstract/abstract18742.shtml
    [7] 伏云发, 徐保磊, 李永程, 李洪谊, 王越超, 余正涛. 基于运动相关皮层电位握力运动模式识别研究. 自动化学报, 2014, 40(6):1045-1057 http://www.aas.net.cn/CN/abstract/abstract18374.shtml

    Fu Yun-Fa, Xu Bao-Lei, Li Yong-Cheng, Li Hong-Yi, Wang Yue-Chao, Yu Zheng-Tao. Recognition of actual grip force movement modes based on movement-related cortical potentials. Acta Automatica Sinica, 2014, 40(6):1045-1057 http://www.aas.net.cn/CN/abstract/abstract18374.shtml
    [8] Mousavi E A, Maller J J, Fitzferald P B, Lithgow B J. Wavelet common spatial pattern in asynchronous offline brain computer interfaces. Biomedical Signal Processing and Control, 2011, 6(2):121-128 doi: 10.1016/j.bspc.2010.08.003
    [9] Li P Y, Wang X R, Li F L, Zhang R, Ma T, Peng Y H, Lei X, Tian Y, Guo D Q, Liu T J, Yao D Z, Xu P. Autoregressive model in the Lp norm space for EEG analysis. Journal of Neuroscience Methods, 2015, 240:170-174 doi: 10.1016/j.jneumeth.2014.11.007
    [10] Jain N, Dandapat S. Constrained autoregressive (CAR) model. In:Proceedings of 2005 Annual IEEE India International Conference. Chennai, India:IEEE, 2005.255-257
    [11] Huan N J, Palaniappan R. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design. Journal of Neural Engineering, 2004, 1(3):142-150 doi: 10.1088/1741-2560/1/3/003
    [12] Lawhern V, Hairston W D, McDowell K, Westerfield M, Robbins K. Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. Journal of Neuroscience Methods, 2012, 208(2):181-189 doi: 10.1016/j.jneumeth.2012.05.017
    [13] Chen L L, Madhavan R, Rapoport B I, Anderson W S. Real-time brain oscillation detection and phase-locked stimulation using autoregressive spectral estimation and time-series forward prediction. IEEE Transactions on Biomedical Engineering, 2013, 60(3):753-762 doi: 10.1109/TBME.2011.2109715
    [14] Anderson C W, Stolz E A, Shamsunder S. Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Transactions on Biomedical Engineering, 1998, 45(3):277-286 doi: 10.1109/10.661153
    [15] Pei X M, Zheng C X. Feature extraction and classification of brain motor imagery task based on MVAR model. In:Proceedings of 2004 International Conference on Machine Learning and Cybernetics. Shanghai, China:IEEE, 2004.3726-3730
    [16] Hu X, Nenov V. Multivariate AR modeling of electromyography for the classification of upper arm movements. Clinical Neurophysiology, 2004, 115(6):1267-1287 http://cn.bing.com/academic/profile?id=1970693885&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Wang J, Xu G Z, Wang L, Zhang H Y. Feature extraction of brain-computer interface based on improved multivariate adaptive autoregressive models. In:Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics. Yantai, China:IEEE, 2010.895-898
    [18] Zhao C L, Zheng C X, Zhao M, Tu Y L, Liu J P. Multivariate autoregressive models and kernel learning algorithms for classifying driving mental fatigue based on electroencephalographic. Expert Systems with Applications, 2011, 38(3):1859-1865 doi: 10.1016/j.eswa.2010.07.115
    [19] Heger D, Terziyska T, Schultz T. Connectivity based feature-level filtering for single-trial EEG BCIS. In:Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy:IEEE, 2014.2064-2068
    [20] Faes L, Erla S, Porta A, Nollo G. A framework for assessing frequency domain causality in physiological time series with instantaneous effects. Philosophical Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences, 2013, 371(1997):20110618 doi: 10.1098/rsta.2011.0618
    [21] Varotto G, Fazio P, Rossi Sebastiano D, Duran D, D'Incerti L, Parati E, Sattin D, Leonardi M, Franceschetti S, Panzica F. Altered resting state effective connectivity in long-standing vegetative state patients:an EEG study. Clinical Neurophysiology, 2014, 152(1):63-68 http://cn.bing.com/academic/profile?id=2032694363&encoded=0&v=paper_preview&mkt=zh-cn
    [22] Panzica F, Camafoglia L, Framceschetti S. EEG-EMG information flow in movement-activated myoclonus in patients with Unverricht-Lundborg disease. Clinical Neurophysiology, 2014, 125(9):1803-1808 doi: 10.1016/j.clinph.2014.01.005
    [23] Wang J J, Zhang Y N. A novel method of multi-channel feature extraction combining multivariate autoregression and multiple-linear principal component analysis. Journal of Biomedical Engineering, 2015, 32(1):19-24 http://cn.bing.com/academic/profile?id=2403326835&encoded=0&v=paper_preview&mkt=zh-cn
    [24] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 1996, 58(1):267-288 http://cn.bing.com/academic/profile?id=2135046866&encoded=0&v=paper_preview&mkt=zh-cn
    [25] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 2006, 68(1):49-67 doi: 10.1111/rssb.2006.68.issue-1
    [26] Zhao P, Rocha G, Yu B. The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of Statistics, 2009, 37(6A):3468-3497 doi: 10.1214/07-AOS584
    [27] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.SIAM Journal on Image Sciences, 2009, 2(1):183——202 doi: 10.1137/080716542
    [28] Jenatton R, Mairal J, Obozinski G, Obozinski G, Bach F. Proximal methods for hierarchical sparse coding. The Journal of Machine Learning Research, 2011, 12:2297-2334 http://cn.bing.com/academic/profile?id=1539012881&encoded=0&v=paper_preview&mkt=zh-cn
    [29] Keirn Z A, Aunon J I. A new mode of communication between man and his surroundings. IEEE Transactions on Biomedical Engineering, 1990, 37(12):1209-1214 doi: 10.1109/10.64464
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  2400
  • HTML全文浏览量:  387
  • PDF下载量:  866
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-20
  • 录用日期:  2016-02-18
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回