2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CNN的监控视频事件检测

王梦来 李想 陈奇 李澜博 赵衍运

王梦来, 李想, 陈奇, 李澜博, 赵衍运. 基于CNN的监控视频事件检测. 自动化学报, 2016, 42(6): 892-903. doi: 10.16383/j.aas.2016.c150729
引用本文: 王梦来, 李想, 陈奇, 李澜博, 赵衍运. 基于CNN的监控视频事件检测. 自动化学报, 2016, 42(6): 892-903. doi: 10.16383/j.aas.2016.c150729
WANG Meng-Lai, LI Xiang, CHEN Qi, LI Lan-Bo, ZHAO Yan-Yun. Surveillance Event Detection Based on CNN. ACTA AUTOMATICA SINICA, 2016, 42(6): 892-903. doi: 10.16383/j.aas.2016.c150729
Citation: WANG Meng-Lai, LI Xiang, CHEN Qi, LI Lan-Bo, ZHAO Yan-Yun. Surveillance Event Detection Based on CNN. ACTA AUTOMATICA SINICA, 2016, 42(6): 892-903. doi: 10.16383/j.aas.2016.c150729

基于CNN的监控视频事件检测

doi: 10.16383/j.aas.2016.c150729
详细信息
    作者简介:

    李想 北京邮电大学信息与通信工程学院硕士研究生. 主要研究方向为计算机视觉与模式识别

    陈奇 北京邮电大学信息与通信工程学院硕士研究生. 主要研究方向为计算机视觉与模式识别

    李澜博 北京邮电大学信息与通信工程学院硕士研究生. 主要研究方向为计算机视觉和大规模深度学习.

    赵衍运 北京邮电大学信息与通信工程学院副教授. 主要研究方向为计算机视觉与模式识别

    通讯作者:

    王梦来 北京邮电大学信息与通信工程学院硕士研究生. 主要研究方向为计算机视觉和深度学习. 本文通信作者. E-mail: wangmenglai@bupt.edu.cn

  • 中图分类号: 

Surveillance Event Detection Based on CNN

More Information
    Author Bio:

    (LI Xiang Master student at the School of Information and Communication Engineering, Beijing University of Posts and Telecommunications. His research interest covers computer vision and pattern recognition

    CHEN Qi Master student at the School of Information and Communication Engineering, Beijing University of Posts and Telecommunications. His research interest covers computer vision and pattern recognition

    LI Lan-Bo Master student at the School of Information and Communica- tion Engineering, Beijing University of Posts and Telecommunications. His re- search interest covers computer vision and large scale deep learning.

    ZHAO Yan-Yun Associate professor at the School of Information and Communication Engineering, Beijing University of Posts and Telecommunications. Her research interest covers com- puter vision and pattern recognition

    Corresponding author: WANG Meng-Lai Master student at the School of Information and Com- munication Engineering, Beijing Uni- versity of Posts and Telecommunica- tions. His research interest covers computer vision and deep learning. Corresponding author of this paper. E-mail:wangmenglai@bupt.edu.cn
  • 摘要: 复杂监控视频中事件检测是一个具有挑战性的难题, 而TRECVID-SED评测使用的数据集取自机场的实际监控视频,以高难度著称. 针对TRECVID-SED评测集, 提出了一种基于卷积神经网络(Convolutional neural network, CNN)级联网络和轨迹分析的监控视频事件检测综合方案. 在该方案中, 引入级联CNN网络在拥挤场景中准确地检测行人, 为跟踪行人奠定了基础; 采用CNN网络检测具有关键姿态的个体事件, 引入轨迹分析方法检测群体事件. 该方案在国际评测中取得了很好的评测排名: 在6个事件检测的评测中, 3个事件检测排名第一.
  • 图  1  头肩检测的级联深度网络(HsNet)结构[26]

    Fig.  1  The architecture of the CNN cascade for head-shoulder detection[26]

    图  2  在线学习非线性运动模式及鲁棒外观模型的多目标跟踪算法框图[13]

    Fig.  2  The block diagram of multi-target tracking by online learning of non-linear motion patterns and robust appearance models[13]

    图  3  Pointing和Embrace事件样本截图

    Fig.  3  Samples of Pointing and Embrace

    图  4  4ObjectPut和PersonRuns事件样本截图

    Fig.  4  Samples of ObjectPut and PersonRuns

    图  5  ObjectPut和PersonRuns事件关键姿态检测的网络结构

    Fig.  5  The architecture of CNN for ObjectPut and PersonRuns key-pose detection

    图  6  群体事件检测框图

    Fig.  6  The block diagram of group event detection

    图  7  头肩区域训练样本示例

    Fig.  7  Samples of head-shoulder

    图  8  与当前最先进的检测方法在SED-PD上的对比[26] (用平均对数漏检率排列,越小越好)

    Fig.  8  Comparison of our results with several state-of-the-art methods on SED-PD[26] (The legends are ordered by log-average miss-rate,the lower the better.

    图  9  在SED-PD上的部分检测结果[26]

    (红框表示正确检测,蓝框表示虚检,绿框表示漏检)

    Fig.  9  Detection results on SED-PD[26]

    (red: correct detection,blue: false alarm,green: missed detection)

    图  10  高斯过程回归改进效果

    Fig.  10  The improved results of Gaussian process regression

    表  1  2015年TRECVID-SED评测结果

    Table  1  Evaluation Results of TRECVID-SED 2015

    排名其他团队最好成绩(ADCR)ADCR#Targ#CorDet#FA#Miss
    Embrace10.86800.79091383690102
    ObjectPut11.01601.0120289233287
    PeopleMeet40.89391.042625630278226
    PeopleSplitUp20.89340.938715224168128
    PersonRuns20.57680.97005048746
    Pointing11.01401.00407941642778
    下载: 导出CSV
  • [1] Text Retrieval Conference (TREC)[Online], available: http://trec.nist.gov/, April 5, 2016
    [2] National Institute of Standards and Technology (NIST)[Online], available: http://www.nist.gov/index.html, April 5, 2016
    [3] TREC Video Retrieval Evaluation (TRECVID)[Online], available: http://www-nlpir.nist.gov/projects/trecvid/, April 5, 2016
    [4] Dollar P, Wojek C, Schiele B, Perona P. Pedestrian detection: an evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761
    [5] Benenson R, Omran M, Hosang J, Schiele B. Ten years of pedestrian detection, what have we learned? In: Proceedings of the 12th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 613-627
    [6] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893
    [7] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE, 2008. 1-8
    [8] Ouyang W, Wang X. Joint deep learning for pedestrian detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 2056-2063
    [9] Luo P, Tian Y, Wang X, Tang X. Switchable deep network for pedestrian detection. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, USA: IEEE, 2014. 899-906
    [10] Hosang J, Omran M, Benenson R, Schiele B. Taking a deeper look at pedestrians. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 4073-4082
    [11] Cuda-convnet. High-performance C++/CUDA implementation of convolutional neural networks[Online], available: https://code.google.com/p/cuda-convnet/, April 5, 2016
    [12] Huang C, Wu B, Nevatia R. Robust object tracking by hierarchical association of detection responses. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 788-801
    [13] Yang B, Nevatia R. Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012. 1918-1925
    [14] Soomro K, Zamir A R, Shah M. UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild, Technical Report CRCV-TR-12-01, Center for Research in Computer Vision, University of Central Florida, USA, 2012.
    [15] Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T. HMDB: a large video database for human motion recognition. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 2556-2563
    [16] Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Li F F. Large-scale video classification with convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, USA: IEEE, 2014. 1725-1732
    [17] Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of the 2014 Conference and Workshop on Neural Information Processing Systems. Montreal, Canada, 2014. 568-576
    [18] Over P, Awad G, Fiscus J, Michel M, Smeaton A F, Kraaij W. TRECVID 2009-goals, tasks, data, evaluation mechanisms and metrics. In: TRECVid Workshop 2009. Gaithersburg, MD, USA: NIST, 2010. 1-42
    [19] Du X Z, Cai Y, Zhao Y C, Li H, Yang Y, Hauptmann A. Informedia@trecvid 2014: surveillance event detection. TRECVid video retrieval evaluation workshop[Online], available:http://www-nlpir.nist.gov/projects/tvpubs/tv14.papers/cmu.pdf, April 5, 2016
    [20] Cheng Y, Brown L, Fan Q F, Liu J J, Feris R, Choudhary A, Pankanti S. IBM-Northwestern@TRECVID 2014: Surveillance Event Detection. TRECVid video retrieval evaluation workshop[Online], available: http://www.nlpir.nist.gov/projects/tvpubs/tv14.papers/ibm.pdf, April 5, 2016
    [21] Laptev I. On space-time interest points. International Journal of Computer Vision, 2005, 64(2-3): 107-123
    [22] Chen M Y, Hauptmann A. MoSIFT: Recognizing Human Actions in Surveillance Videos, Technical Report CMU-CS-09-161, Department of Computer Science, Mellon University, USA, 2009.
    [23] Lawrence S, Giles C L, Tsoi A C, Back A D. Face recognition: a convolutional neural-network approach. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113
    [24] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 2012 Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates, Inc., 2012. 1097-1105
    [25] Jia Y Q, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, USA: ACM, 2014. 675-678
    [26] Chen Q, Jiang W H, Zhao Y Y, Su F. Part-based deep network for pedestrian detection in surveillance videos. In: Proceedings of the 2015 IEEE International Conference on Visual Communications and Image Processing. Singapore: IEEE, 2015. 1-4
    [27] 李澜博. 纸币面值识别及监控视频跟踪算法[硕士学位论文], 北京邮电大学, 中国, 2015.

    Li Lan-Bo. Currency Recognition and Multi-Target Tracking Algorithm[Master dissertation], Beijing University of Posts and Communications, China, 2015.
    [28] Prince S J D. Computer Vision: Models, Learning, and Inference. Cambridge: Cambridge University Press, 2012.
    [29] SED Pedestrian Dataset (SED-PD)[Online], available: http://www.bupt-mcprl.net/datadownload.php, April 5, 2016
    [30] TRECVID Surveillance Event Detection (SED) Evaluation Plan[Online], available: ftp://jaguar.ncsl.nist.gov/pub/SED15_EvaluationPlan.pdf, April 5, 2016
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  3202
  • HTML全文浏览量:  1550
  • PDF下载量:  1139
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 录用日期:  2016-04-01
  • 刊出日期:  2016-06-20

目录

    /

    返回文章
    返回