2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于CLMF的深度卷积神经网络模型

随婷婷 王晓峰

随婷婷, 王晓峰. 一种基于CLMF的深度卷积神经网络模型. 自动化学报, 2016, 42(6): 875-882. doi: 10.16383/j.aas.2016.c150741
引用本文: 随婷婷, 王晓峰. 一种基于CLMF的深度卷积神经网络模型. 自动化学报, 2016, 42(6): 875-882. doi: 10.16383/j.aas.2016.c150741
SUI Ting-Ting, WANG Xiao-Feng. Convolutional Neural Networks with Candidate Location and Multi-feature Fusion. ACTA AUTOMATICA SINICA, 2016, 42(6): 875-882. doi: 10.16383/j.aas.2016.c150741
Citation: SUI Ting-Ting, WANG Xiao-Feng. Convolutional Neural Networks with Candidate Location and Multi-feature Fusion. ACTA AUTOMATICA SINICA, 2016, 42(6): 875-882. doi: 10.16383/j.aas.2016.c150741

一种基于CLMF的深度卷积神经网络模型

doi: 10.16383/j.aas.2016.c150741
基金项目: 

国家自然科学基金 31170952

国家海洋局项目 201305026

上海海事大学优秀博士学位论文培育项目 2014bxlp005

上海海事大学研究生创新基金项目 2014ycx047

详细信息
    作者简介:

    王晓峰 上海海事大学教授, 博士. 主要研究方向为深度学习, 人工智能, 数据挖掘与知识发现

    通讯作者:

    随婷婷 上海海事大学信息工程学院博士研究生. 2013年获得上海海事大学信息工程学院硕士学位. 主要研究方向为深度学习, 人工智能, 数据挖掘与知识发现. 本文通信作者. E-mail: suisui61@163.com

  • 中图分类号: 

Convolutional Neural Networks with Candidate Location and Multi-feature Fusion

Funds: 

National Natural Science Foundation of China 31170952

Foundation of the National Bureau of Oceanogra- phy 201305026

Excellent Doctoral Dissertation Cultivation Foundation of Shanghai Maritime University 2014bxlp005

Graduate Innovation Foundation of Shanghai Maritime Univer- sity 2014ycx047

More Information
    Author Bio:

    WANG Xiao-Feng Ph. D., professor at Shanghai Maritime University. His research interest covers deep learning, articial intelligence, data mining and knowledge discovery

    Corresponding author: SUI Ting-Ting Ph. D. candidate at the College of Information Engineering, Shanghai Maritime University. She received her master degree from the College of Information Engineering, Shanghai Maritime University in 2013. Her research interest covers deep learning, articial intelligence, data mining and knowledge discovery. Corresponding author of this paper. E-mail:regnier@ibpc.fr
  • 摘要: 针对传统人工特征提取模型难以满足复杂场景下目标识别的需求, 提出了一种基于CLMF的深度卷积神经网络(Convolutional neural networks with candidate location and multi-feature fusion, CLMF-CNN).该模型结合视觉显著性、多特征融合和CNN模型实现目标对象的识别. 首先, 利用加权Itti模型获取目标候选区; 然后, 利用CNN模型从颜色、亮度多特征角度提取目标对象的特征, 经过加权融合供目标识别; 最后, 与单一特征以及目前的流行算法进行对比实验, 结果表明本文模型不仅在同等条件下正确识别率得到了提高, 同时, 达到实时性要求.
  • 图  1  深度卷积神经网络的结构图

    Fig.  1  The structure chart of CNN model

    图  2  CLMF-CNN模型结构图

    Fig.  2  The structure chart of CLMF-CNN model}

    图  3  目标候选区域提取效果图

    Fig.  3  The extraction of object candidate

    图  4  CNN模型添加候选目标后的识别效果对比图

    Fig.  4  The recognition performance of CNN model with candidate objects

    图  5  覆盖率对比图

    Fig.  5  The comparison chat of OV

    图  6  目标识别时耗对比图

    Fig.  6  The comparison chat of time consumption on object recognition

    图  7  CNN模型添加多特征后的识别效果对比图

    Fig.  7  The recognition performance of CNN model with multi-features

    图  8  不同方法的分类效果对比图

    Fig.  8  Recognition performance of different methods

    表  1  本文方法参数设置表

    Table  1  Parameters setting of our method

    层数种类特征图个数卷积核大小
    1卷积层1007£7
    2下采样层1002£2
    3卷积层1504£4
    4下采样层1502£2
    5卷积层2504£4
    6下采样层2502£2
    7全连接层3001£1
    8全连接层81£1
    激活函数Sigmoid
    损失函数Mean square error
    下载: 导出CSV

    表  2  CLMF-CNN模型的图像标注效果

    Table  2  The image annotation performance of CLMF-CNN

    标识图像标注信息
    下载: 导出CSV
  • [1] Sarikaya R, Hinton G E, Deoras A. Application of deep belief networks for natural language understanding. IEEE/ACM Transactions on Audio, Speech, & Language Processing, 2014, 22(4): 778-784
    [2] Graves A, Mohamed A R, Hinton G. Speech recognition with deep recurrent neural networks. In: Proceedings of the 38th IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC: IEEE, 2013. 6645-6649
    [3] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展. 计算机应用研究, 2014, 31(7): 1921-1930

    Liu Jian-Wei, Liu Yuan, Luo Xiong-Lin. Research and development on deep learning. Application Research of Computers, 2014, 31(7): 1921-1930
    [4] Najafabadi M M, Villanustre F, Khoshgoftaar T M, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics. Journal of Big Data, 2015, 2: 1
    [5] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324
    [6] LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, Jackel L D. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541-551
    [7] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada, USA: Curran Associates, Inc., 2012. 2012-2020
    [8] 王欣, 唐俊, 王年. 基于双层卷积神经网络的步态识别算法. 安徽大学学报(自然科学版), 2015, 39(1): 32-36

    Wang Xin, Tang Jun, Wang Nian. Gait recognition based on double-layer convolutional neural networks. Journal of Anhui University (Natural Science Edition), 2015, 39(1): 32-36
    [9] Ouyang W, Wang X. Joint deep learning for pedestrian detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 2056-2063
    [10] Ji S W, Xu W, Yang M, Yu K. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231
    [11] 徐姗姗, 刘应安, 徐昇. 基于卷积神经网络的木材缺陷识别. 山东大学学报(工学版), 2013, 43(2): 23-28

    Xu Shan-Shan, Liu Ying-An, Xu Sheng. Wood defects recognition based on the convolutional neural network. Journal of Shandong University (Engineering Science), 2013, 43(2): 23-28
    [12] 贾世杰, 杨东坡, 刘金环. 基于卷积神经网络的商品图像精细分类. 山东科技大学学报(自然科学版), 2014, 33(6): 91-96

    Jia Shi-Jie, Yang Dong-Po, Liu Jin-Huan. Product image fine-grained classification based on convolutional neural network. Journal of Shandong University of Science and Technology (Natural Science), 2014, 33(6): 91-96
    [13] Unuma H, Hasegawa H. Visual attention and object perception: levels of visual features and perceptual representation. Journal of Kawamura Gakuen Womans University, 2007, 18: 47-60
    [14] Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Diego, CA: IEEE, 2005. 994-1000
    [15] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1998, 20(11): 1254-1259
    [16] 姚原青, 李峰, 周书仁. 基于颜色——纹理特征的目标跟踪. 计算机工程与科学, 2014, 36(8): 1581-1587

    Yao Yuan-Qing, Li Feng, Zhou Shu-Ren. Target tracking based on color and the texture feature. Computer Engineering & Science, 2014, 36(8): 1581-1587
    [17] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-44
    [18] Huang F J, LeCun Y. Large-scale learning with SVM and convolutional for generic object categorization. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision & Pattern Recognition. New York, USA: IEEE, 2006. 284-291
    [19] Scherer D, Müller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition. In: Proceedings of the 20th International Conference on Artificial Neural Networks. Thessaloniki, Greece: Springer, 2010. 92-101
    [20] Serences J T, Yantis S. Selective visual attention and perceptual coherence. Trends in Cognitive Sciences, 2006, 10(1): 38-45
    [21] 黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述. 自动化学报, 2014, 40(4): 561-576

    Li Wan-Yi, Wang Peng, Qiao Hong. A survey of visual attention based methods for object tracking. Acta Automatica Siinica, 2014, 40(4): 561-576
    [22] Maljkovic V, Nakayama K. Priming of pop-out: I. role of features. Memory & Cognition, 1994, 22(6): 657-672
    [23] Roos M J, Wolmetz M, Chevillet M A. A hierarchical model of vision (HMAX) can also recognize speech. BMC Neuroscience, 2014, 15(Suppl 1): 187
    [24] Li P H, Chaumette F. Image cues fusion for object tracking based on particle filter. In: Proceedings of the 3rd International Workshop on Articulated Motion and Deformable Objects. Palma de Mallorca, Spain: Springer, 2004. 99-110
    [25] Wang X, Tang Z M. Modified particle filter-based infrared pedestrian tracking. Infrared Physics & Technology, 2010, 53(4): 280-287
    [26] 朱庆生, 张敏, 柳锋. 基于HMAX特征的层次式柑桔溃疡病识别方法. 计算机科学, 2008, 35(4): 231-232

    Zhu Qing-Sheng, Zhang Min, Liu Feng. Hierarchical citrus canker recognition based on HMAX features. Computer Science, 2008, 35(4): 231-232
    [27] 汤毓婧. 基于人脑视觉感知机理的分类与识别研究[硕士学位论文], 南京理工大学, 中国, 2009.

    Tang Yu-Jing. Classification and Recognition Research based on Human Visual Perception Mechanism[Master dissertation], Nanjing University of Science and Technology, China, 2009.
    [28] Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y. Locality-constrained linear coding for image classification. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 3360-3367
    [29] 张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估. 自动化学报, 2014, 40(2): 306-315

    Zhang Xiao-Li, Li Xiong-Fei, Li Jun. Validation and correlation analysis of metrics for evaluating performance of image fusion. Acta Automatica Sinica, 2014, 40(2): 306-315
    [30] 杨波, 敬忠良. 梅花形采样离散小波框架图像融合算法. 自动化学报, 2010, 36(1): 12-22

    Yang Bo, Jing Zhong-Liang. Image fusion algorithm based on the quincunx-sampled discrete wavelet frame. Acta Automatica Sinica, 2010, 36(1): 12-22
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2835
  • HTML全文浏览量:  446
  • PDF下载量:  2033
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 录用日期:  2016-03-24
  • 刊出日期:  2016-06-20

目录

    /

    返回文章
    返回