[1]
|
Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC: IEEE, 2000. 142-149
|
[2]
|
Risfic B, Arulampalam S, Gordon N. Beyond the Kalman filter-book review. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(7) : 37-38
|
[3]
|
Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2001. I-511-I-518
|
[4]
|
Pérez P, Hue C, Vermaak J, Gangnet M. Color-based probabilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002. 661-675
|
[5]
|
Possegger H, Mauthner T, Bischof H. In defense of color-based model-free tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2113-2120
|
[6]
|
Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adaptive color attributes for real-time visual tracking. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1090-1097
|
[7]
|
Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Processing. Jerusalem: IEEE, 1994. 582-585
|
[8]
|
Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 2009, 113(3) : 345-352
|
[9]
|
Miao Q, Wang G J, Shi C B, Lin X G, Ruan Z W. A new framework for on-line object tracking based on SURF. Pattern Recognition, 2011, 32(13) : 1564-1571
|
[10]
|
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893
|
[11]
|
Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1981. 674-679
|
[12]
|
Horn B K P, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17(2) : 185-203
|
[13]
|
Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7) : 1409-1422
|
[14]
|
Kalal Z, Mikolajczyk K, Matas J. Forward-backward error: automatic detection of tracking failures. In: Proceedings of the 20th IEEE International Conference on Pattern Recognition. Istanbul: IEEE, 2010. 2756-2759
|
[15]
|
Li X, Hu W M, Shen C H, Zhang Z F, Dick A, van den Hengel A. A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4) : Article No.58
|
[16]
|
张焕龙, 胡士强, 杨国胜. 基于外观模型学习的视频目标跟踪方法综述. 计算机研究与发展, 2015, 52(1) : 177-190Zhang Huan-Long, Hu Shi-Qiang, Yang Guo-Sheng. Video object tracking based on appearance models learning. Journal of Computer Research and Development, 2015, 52(1) : 177-190
|
[17]
|
侯志强, 韩崇昭. 视觉跟踪技术综述. 自动化学报, 2006, 32(4) : 603-617Hou Zhi-Qiang, Han Chong-Zhao. A survey of visual tracking. Acta Automatica Sinica, 2006, 32(4) : 603-617
|
[18]
|
Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 2006. 798-805
|
[19]
|
Alt N, Hinterstoisser S, Navab N. Rapid selection of reliable templates for visual tracking. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 1355-1362
|
[20]
|
He S F, Yang Q X, Lau R W H, Wang J, Yang M H. Visual tracking via locality sensitive histograms. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013. 2427-2434
|
[21]
|
Black M J, Jepson A D. EigenTracking: robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision, 1998, 26(1) : 63-84
|
[22]
|
Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3) : 125-141
|
[23]
|
Zhang T Z, Liu S, Xu C S, Yan S C, Ghanem B, Ahuja N, Yang M H. Structural sparse tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 150-158
|
[24]
|
Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1822-1829
|
[25]
|
Zhang T Z, Ghanem B, Liu S, Ahuja N. Robust visual tracking via multi-task sparse learning. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 2042-2049
|
[26]
|
Zhang S P, Yao H X, Sun X, Lu X S. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7) : 1772-1788
|
[27]
|
Wright J, Ma Y, Mairal J, Sapiro G, Huang T S, Yan S C. Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE, 2010, 98(6) : 1031-1044
|
[28]
|
Mei X, Ling H B. Robust visual tracking using L1 minimization. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto: IEEE, 2009. 1436-1443
|
[29]
|
Hare S, Saffari A, Torr P H S. Struck: structured output tracking with kernels. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011. 263-270
|
[30]
|
Avidan S. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8) : 1064-1072
|
[31]
|
Bai Y C, Tang M. Robust tracking via weakly supervised ranking SVM. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 1854-1861
|
[32]
|
Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In: Proceedings of the British Machine Vision Conference. Edinburgh, UK: BMVA Press, 2006. 47-56
|
[33]
|
Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 234-247
|
[34]
|
Stalder S, Grabner H, van Gool L. Beyond semi-supervised tracking: tracking should be as simple as detection, but not simpler than recognition. In: Proceedings of the 12th IEEE International Conference on Computer Vision Workshops. Kyoto: IEEE, 2009. 1409-1416
|
[35]
|
Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 983-990
|
[36]
|
Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012. 702-715
|
[37]
|
Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3) : 583-596
|
[38]
|
Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012. 864-877
|
[39]
|
黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述. 计算机学报, 2014, 37(6) : 1225-1240Huang Kai-Qi, Ren Wei-Qiang, Tan Tie-Niu. A review on image object classification and detection. Chinese Journal of Computers, 2014, 37(6) : 1225-1240
|
[40]
|
Deng J, Dong W, Socher R, Li J J, Li K, Li F F. ImageNet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 248-255
|
[41]
|
Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2) : 303-338
|
[42]
|
Smeaton A F, Over P, Kraaij W. Evaluation campaigns and TRECVid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval. Santa Barbara, CA, USA: ACM, 2006. 321-330
|
[43]
|
Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013. 2411-2418
|
[44]
|
Wu Y, Lim J, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9) : 1834-1848
|
[45]
|
Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernández G, Vojír T, Häger G, Nebehay G, Pflugfelder R. The visual object tracking VOT2015 challenge results. In: Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops. Santiago: IEEE, 2015. 564-586
|
[46]
|
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088) : 533-536
|
[47]
|
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786) : 504-507
|
[48]
|
Hinton G, Deng L, Yu D, Dahl G E, Mohamed A R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T N, Kingsbury B. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Processing Magazine, 2012, 29(6) : 82-97
|
[49]
|
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceeding of Advances in Neural Information Processing Systems. Nevada, USA: MIT Press, 2012. 1097-1105
|
[50]
|
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 580-587
|
[51]
|
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceeding of Advances in Neural Information Processing Systems. Montréal, Canada: MIT Press, 2015. 91-99
|
[52]
|
Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Li F F. Large-scale video classification with convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1725-1732
|
[53]
|
Ji S W, Xu W, Yang M, Yu K. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1) : 221-231
|
[54]
|
Lee T S, Mumford D, Romero R, Lamme V A F. The role of the primary visual cortex in higher level vision. Vision Research, 1998, 38(15-16) : 2429-2454
|
[55]
|
Lee T S, Mumford D. Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A: Optics Image Science and Vision, 2003, 20(7) : 1434-1448
|
[56]
|
Jia Y Q, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, FL, USA: ACM, 2014. 675-678
|
[57]
|
Bergstra J, Bastien F, Breuleux O, Lamblin P, Pascanu R, Delalleau O, Desjardins G, Warde-Farley D, Goodfellow I J, Bergeron A, Bengio Y. Theano: deep learning on GPUS with python. In: Advances in Neural Information Processing Systems Workshops. Granada, Spain: MIT Press, 2011. 1-4
|
[58]
|
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7) : 1527-1554
|
[59]
|
Vincent P, Larochelle H, Bengio Y, Manzagol P A. Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM, 2008. 1096-1103
|
[60]
|
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11) : 2278-2324
|
[61]
|
Jozefowicz R, Zaremba W, Sutskever I. An empirical exploration of recurrent network architectures. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: JMLR, 2015. 2342-2350
|
[62]
|
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8) : 1735-1780
|
[63]
|
Gers F A, Schraudolph N N, Schmidhuber J. Learning precise timing with LSTM recurrent networks. The Journal of Machine Learning Research, 2003, 3: 115-143
|
[64]
|
Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J. A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(5) : 855-868
|
[65]
|
Wang N Y, Yeung D Y. Learning a deep compact image representation for visual tracking. In: Proceeding of Advances in Neural Information Processing Systems. Nevada, USA: MIT Press, 2013. 809-817
|
[66]
|
Torralba A, Fergus R, Freeman W T. 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11) : 1958-1970
|
[67]
|
Zhou X Z, Xie L, Zhang P, Zhang Y N. An ensemble of deep neural networks for object tracking. In: Proceedings of the 2014 IEEE International Conference on Image Processing. Paris, France: IEEE, 2014. 843-847
|
[68]
|
Kuen J, Lim K M, Lee C P. Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle. Pattern Recognition, 2015, 48(10) : 2964-2982
|
[69]
|
Ding J W, Huang Y Z, Liu W, Huang K Q. Severely blurred object tracking by learning deep image representations. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(2) : 319-331
|
[70]
|
Dai L, Zhu Y S, Luo G B, He C. A low-complexity visual tracking approach with single hidden layer neural networks. In: Proceedings of the 13th IEEE International Conference on Control Automation Robotics and Vision. Singapore: IEEE, 2014. 810-814
|
[71]
|
Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 1962, 160(1) : 106-154
|
[72]
|
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36(4) : 193-202
|
[73]
|
LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, Jackel L D. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4) : 541-551
|
[74]
|
LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems. Paris, France: IEEE, 2010. 253-256
|
[75]
|
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 1-9
|
[76]
|
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014.
|
[77]
|
Jin J, Dundar A, Bates J, Farabet C, Culurciello E. Tracking with deep neural networks. In: Proceedings of the 47th Annual Conference on Information Sciences and Systems (CISS). Baltimore, MD, USA: IEEE, 2013. 1-5
|
[78]
|
Wang L, Liu T, Wang G, Chan K L, Yang Q X. Video tracking using learned hierarchical features. IEEE Transactions on Image Processing, 2015, 24(4) : 1424-1435
|
[79]
|
Wang N Y, Li S Y, Gupta A, Yeung D Y. Transferring rich feature hierarchies for robust visual tracking. arXiv: 1501.04587, 2015.
|
[80]
|
Hong S, You T, Kwak S, Han B. Online tracking by learning discriminative saliency map with convolutional neural network. In: Proceedings of the 32th International Conference on Machine Learning. Lille, France: JMLR, 2015. 597-606
|
[81]
|
Wang L J, Ouyang W L, Wang X G, Lu H C. Visual tracking with fully convolutional networks. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 3119-3127
|
[82]
|
Ma C, Huang J B, Yang X K, Yang M H. Hierarchical convolutional features for visual tracking. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 3074-3082
|
[83]
|
Li H X, Li Y, Porikli F. DeepTrack: learning discriminative feature representations online for robust visual tracking. IEEE Transactions on Image Processing, 2016, 25(4) : 1834-1848
|
[84]
|
Li H X, Li Y, Porikli F. Robust online visual tracking with a single convolutional neural network. In: Proceedings of the 12th Asian Conference on Computer Vision. Singapore: Springer, 2015. 194-209
|
[85]
|
He Y, Dong Z, Yang M, Chen L, Pei M T, Jia Y D. Visual tracking using multi-stage random simple features. In: Proceedings of the 22nd International Conference on Pattern Recognition. Stockholm: IEEE, 2014. 4104-4109
|
[86]
|
Danelljan M, Häger G, Khan F S, Felsberg M. Convolutional features for correlation filter based visual tracking. In: Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop. Santiago: IEEE, 2015. 621-629
|
[87]
|
Wang N Y, Shi J P, Yeung D Y, Jia J Y. Understanding and diagnosing visual tracking systems. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 3101-3109
|
[88]
|
Hong Z B, Chen Z, Wang C H, Mei X, Prokhorov D, Tao D C. MUlti-Store tracker (MUSTer): a cognitive psychology inspired approach to object tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 749-758
|