2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Buck型变换器自适应有限时间降压控制算法研究

杨晨 程盈盈 都海波 王金平 何怡刚

杨晨, 程盈盈, 都海波, 王金平, 何怡刚. Buck型变换器自适应有限时间降压控制算法研究. 自动化学报, 2016, 42(2): 315-320. doi: 10.16383/j.aas.2016.c150446
引用本文: 杨晨, 程盈盈, 都海波, 王金平, 何怡刚. Buck型变换器自适应有限时间降压控制算法研究. 自动化学报, 2016, 42(2): 315-320. doi: 10.16383/j.aas.2016.c150446
YANG Chen, CHENG Ying-Ying, DU Hai-Bo, WANG Jin-Ping, HE Yi-Gang. An Adaptive Finite-time Control Algorithm for Buck Converter Systems. ACTA AUTOMATICA SINICA, 2016, 42(2): 315-320. doi: 10.16383/j.aas.2016.c150446
Citation: YANG Chen, CHENG Ying-Ying, DU Hai-Bo, WANG Jin-Ping, HE Yi-Gang. An Adaptive Finite-time Control Algorithm for Buck Converter Systems. ACTA AUTOMATICA SINICA, 2016, 42(2): 315-320. doi: 10.16383/j.aas.2016.c150446

Buck型变换器自适应有限时间降压控制算法研究

doi: 10.16383/j.aas.2016.c150446
基金项目: 

国家自然科学基金 51577046

国家自然科学基金 61304007

国家自然科学基金 51407054

教育部博士点基金项目 20130111120007

详细信息
    作者简介:

    杨晨  合肥工业大学电气与自动化工程学院硕士研究生.主要研究方向为电力电子控制.E-mail:yang_chen92@163.com

    程盈盈  合肥工业大学电气与自动化工程学院助理研究员.主要研究方向为非线性系统控制和电力电子控制.E-mail:zoeych@126.com

    王金平  合肥工业大学电气与自动化工程学院副教授.主要研究方向为开关变换器拓扑及控制方法研究.E-mail:waupter919@163.com

    何怡刚  合肥工业大学电气与自动化工程学院教授.主要研究方向为电路理论及其应用.E-mail:18655136887@163.com

    通讯作者:

    都海波  合肥工业大学电气与自动化工程学院副教授.主要研究方向为非线性系统控制理论及应用.本文通信作者.E-mail:haibo.du@hfut.edu.cn

An Adaptive Finite-time Control Algorithm for Buck Converter Systems

Funds: 

National Natural Science Foundation of China 51577046

National Natural Science Foundation of China 61304007

National Natural Science Foundation of China 51407054

Ph.D. Programs Foundation of Ministry of Education of China 20130111120007

More Information
    Author Bio:

    Master student at the School of Electrical Engineering and Automation, Hefei University of Technology. His main research interest is power electronics control

    Assistant professor at the School of Electrical Engineering and Automation, Hefei University of Technology. Her research interest covers nonlinear system control and power electronics control

    Associate professor at the School of Electrical Engineering and Automation, Hefei University of Technology. His research interest covers topology and control method of switching converters

    Professor at the School of Electrical Engineering and Automation, Hefei University of Technology. His research interest covers circuit theory and its applications

    Corresponding author: DU Hai-Bo Associate professor at the School of Electrical Engineering and Automation, Hefei University of Technology. His research interest covers nonlinear system control and its applications. Corresponding author of this paper.
  • 摘要: 针对负载未知情况下Buck型DC-DC变换器系统, 基于有限时间控制技术和自适应控制技术, 提出了一种新的快速降压控制算法.首先, 基于时间尺度变换, 对系统的平均状态空间方程进行变换; 然后, 利用饱和有限时间控制理论设计出一类新的快速降压控制算法, 以实现输出电压在有限时间内收敛到参考电压.由于控制器设计过程中考虑了饱和约束条件, 使得变换器的占空比函数满足0到1之间的约束条件.对于负载未知情况, 设计了有限时间观测器以估计未知负载, 最终得到自适应式的有限时间控制算法.与PI控制结果进行了仿真对比, 验证了所提出的控制算法既具有快速的调节性能, 又具有较强的抗负载变化性能.
  • 图  1  变换器电路图

    Fig.  1  Buck converter circuit

    图  2  自适应有限时间电压调节控制算法实现框图

    Fig.  2  The block diagram of adaptive finite-time voltage control algorithm

    图  3  两种控制算法作用下输出电压响应曲线 (1 s时, 参考电压由8 V $\to$ 5 V)

    Fig.  3  The response curves for output voltage under two control algorithms (At 1 second, reference voltage is from 8 V $\to$ 5 V.)

    图  4  两种控制算法作用下输出电压响应曲线 (0.5 s时, 负载电阻由30 $\Omega\to15 \Omega$ ; 1 s时, 负载电阻由15 $\Omega\to30 \Omega$ )

    Fig.  4  The response curves for output voltage under two control algorithms (At 0.5 second, load resistance is from 30 $\Omega\to15 \Omega$ ; at 1 second, load resistance is from 15 $\Omega\to30 \Omega$ .

    图  5  负载估计值响应曲线

    Fig.  5  The response curve for load estimation

  • [1] 张兴, 杜少武, 黄海宏.电力电子技术.北京:科学出版社, 2010.

    Zhang Xing, Du Shao-Wu, Huang Hai-Hong. Power Electronics Technology. Beijing:Science Press, 2010.
    [2] Alvarez-Ramirez J, Espinosa-Pérez G, Noriega-Pineda D. Current-mode control of DC-DC power converters:a backstepping approach. International Journal of Robust and Nonlinear Control, 2003, 13(5):421-442 doi: 10.1002/rnc.v13:5
    [3] Tan S C, Lai Y M, Tse C K, Cheung M K H. Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Transactions on Power Electronics, 2004, 21(1):182-192
    [4] Tan S C, Lai Y M, Tse C K. Techniques and implementation. Sliding Mode Control of Switching Power Converters. Boca Raton:CRC press, 2011.
    [5] Elmas C, Deperlioglu O, Sayan H H. Adaptive fuzzy logic controller for DC-DC converters. Expert Systems with Applications, 2009, 36(2):1540-1548 doi: 10.1016/j.eswa.2007.11.029
    [6] Hu T S. A nonlinear-system approach to analysis and design of power-electronic converters with saturation and bilinear terms. IEEE Transactions on Power Electronics, 2011, 26(2):399-410 doi: 10.1109/TPEL.2010.2054115
    [7] 李虹, 尚佳宁, 陈姚, 尚倩, 郝瑞祥.基于fal函数的非线性PI控制器在DC-DC变换器中的应用.电工技术学报, 2014, 29(S1):326-331 http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2014S1045.htm

    Li Hong, Shang Jia-Ning, Chen Yao, Shang Qian, Hao Rui-Xiang. The applications of nonlinear PI controller based on the fal function in the DC-DC converter. Transactions of China Electrotechnical Society, 2014, 29(S1):326-331 http://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2014S1045.htm
    [8] Zhang C L, Wang J X, Li S H, Wu B, Qian C J. Robust control for PWM-based DC-DC buck power converters with uncertainty via sampled-data output feedback. IEEE Transactions on Power Electronics, 2015, 30(1):504-515 doi: 10.1109/TPEL.2014.2299759
    [9] Wang J X, Li S H, Yang J X, Wu B, Li Q. Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances. IET Control Theory and Applications, 2015, 9(4):579-586 doi: 10.1049/iet-cta.2014.0220
    [10] Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Transactions on Automatic Control, 1998, 43(5):678-682 doi: 10.1109/9.668834
    [11] 丁世宏, 李世华.有限时间控制问题综述.控制与决策, 2011, 26(2):161-169

    Ding Shi-Hong, Li Shi-Hua. A survey for finite-time control problems. Control and Decision, 2011, 26(2):161-169
    [12] 李世华, 丁世宏, 田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法.自动化学报, 2007, 33(1):101-104 doi: 10.1360/aas-007-0101

    Li Shi-Hua, Ding Shi-Hong, Tian Yu-Ping. A finite-time state feedback stabilization method for a class of second order nonlinear systems. Acta Automatica Sinica, 2007, 33(1):101-104 doi: 10.1360/aas-007-0101
    [13] Shen Y J, Xia X H. Semi-global finite-time observers for nonlinear systems. Automatica, 2008, 44(12):3152-3156 doi: 10.1016/j.automatica.2008.05.015
    [14] Shen Y J, Huang Y H. Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers. IEEE Transactions on Automatic Control, 2009, 54(11):2621-2625 doi: 10.1109/TAC.2009.2029298
    [15] 丁世宏, 李世华.输入饱和下的非线性积分系统的全局有限时间镇定.自动化学报, 2011, 37(10):1222-1231 http://www.aas.net.cn/CN/abstract/abstract17611.shtml

    Ding Shi-Hong, Li Shi-Hua. Global finite-time stabilization of nonlinear integrator systems subject to input saturation. Acta Automatica Sinica, 2011, 37(10):1222-1231 http://www.aas.net.cn/CN/abstract/abstract17611.shtml
    [16] Zhai J Y. Global finite-time output feedback stabilisation for a class of uncertain non-triangular nonlinear systems. International Journal of Systems Science, 2014, 45(3):637-646 doi: 10.1080/00207721.2012.724113
    [17] Li S H, Zhou M M, Yu X H. Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Transactions on Industrial Informatics, 2013, 9(4):1879-1891 doi: 10.1109/TII.2012.2226896
    [18] 李向阳.基于有限时间跟踪微分器的迭代学习控制.自动化学报, 2014, 40(7):1366-1374 http://www.aas.net.cn/CN/abstract/abstract18408.shtml

    Li Xiang-Yang. Iterative learning control based on finite time tracking differentiator. Acta Automatica Sinica, 2014, 40(7):1366-1374 http://www.aas.net.cn/CN/abstract/abstract18408.shtml
    [19] Zhu Y K, Guan X P, Luo X Y. Finite-time consensus of heterogeneous multi-agent systems with linear and nonlinear dynamics. Acta Automatica Sinica, 2014, 40(11):2618-2624 doi: 10.1016/S1874-1029(14)60408-0
    [20] 李雪冰, 马莉, 丁世宏.一类新的二阶滑模控制方法及其在倒立摆控制中的应用.自动化学报, 2015, 41(1):193-202 http://www.aas.net.cn/CN/abstract/abstract18598.shtml

    Li Xue-Bing, Ma Li, Ding Shi-Hong. A new second-order sliding mode control and its application to inverted pendulum. Acta Automatica Sinicae, 2015, 41(1):193-202 http://www.aas.net.cn/CN/abstract/abstract18598.shtml
    [21] 王芳, 陈鑫, 何勇, 吴敏.联合连通条件下的二阶多智能体系统有限时间一致性控制.控制理论与应用, 2014, 31(7):981-986 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201407020.htm

    Wang Fang, Chen Xin, He Yong, Wu Min. Finite-time consensus control of second-order multi-agent systems with jointly-connected topologies. Control Theory and Applications, 2014, 31(7):981-986 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201407020.htm
    [22] Liu S C, Geng Z Y, Sun J Y. Finite-time attitude control:a finite-time passivity approach. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1):102-108 doi: 10.1109/JAS.2015.7032911
    [23] 董琦, 宗群, 王芳, 田栢苓.基于光滑二阶滑模的可重复使用运载器有限时间再入姿态控制.控制理论与应用, 2015, 32(4):448-455 http://youxian.cnki.com.cn/yxdetail.aspx?filename=KZLY20150512000&dbname=CAPJ2015

    Dong Qi, Zong Qun, Wang Fang, Tian Bai-Ling. Finite time smooth second-order sliding-mode controller design for reentry reusable launch vehicle. Control Theory and Applications, 2015, 32(4):448-455 http://youxian.cnki.com.cn/yxdetail.aspx?filename=KZLY20150512000&dbname=CAPJ2015
    [24] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38(3):751-766 doi: 10.1137/S0363012997321358
    [25] Komurcugil H. Non-singular terminal sliding-mode control of DC-DC buck converters. Control Engineering Practice, 2013, 21(3):321-332 doi: 10.1016/j.conengprac.2012.11.006
    [26] Hong Y G, Xu Y S, Huang J. Finite-time control for robot manipulators. Systems and Control Letters, 2002, 46(4):243-253 doi: 10.1016/S0167-6911(02)00130-5
    [27] Khalil H K. Nonlinear Systems (3rd Edition). Englewood, NJ, USA:Prentice Hall, 2002. 303-334
    [28] Du H B, Qian C J, Yang S Z, Li S H. Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems. Automatica, 2013, 49(2):601-609 doi: 10.1016/j.automatica.2012.11.036
  • 加载中
图(5)
计量
  • 文章访问数:  2348
  • HTML全文浏览量:  234
  • PDF下载量:  1084
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 录用日期:  2015-11-06
  • 刊出日期:  2016-02-01

目录

    /

    返回文章
    返回