2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于广义期望首达时间的形状距离学习算法

郑丹晨 杨亚飞 韩敏

郑丹晨, 杨亚飞, 韩敏. 一种基于广义期望首达时间的形状距离学习算法. 自动化学报, 2016, 42(2): 246-254. doi: 10.16383/j.aas.2016.c150105
引用本文: 郑丹晨, 杨亚飞, 韩敏. 一种基于广义期望首达时间的形状距离学习算法. 自动化学报, 2016, 42(2): 246-254. doi: 10.16383/j.aas.2016.c150105
ZHENG Dan-Chen, YANG Ya-Fei, HAN Min. A Shape Distance Learning Algorithm Based on Generalized Mean First-passage Time. ACTA AUTOMATICA SINICA, 2016, 42(2): 246-254. doi: 10.16383/j.aas.2016.c150105
Citation: ZHENG Dan-Chen, YANG Ya-Fei, HAN Min. A Shape Distance Learning Algorithm Based on Generalized Mean First-passage Time. ACTA AUTOMATICA SINICA, 2016, 42(2): 246-254. doi: 10.16383/j.aas.2016.c150105

一种基于广义期望首达时间的形状距离学习算法

doi: 10.16383/j.aas.2016.c150105
基金项目: 

中央高校基本科研业务费专项资金 DUT14RC (3)128

国家自然科学基金 61374154

详细信息
    作者简介:

    郑丹晨  大连理工大学电子信息与电气工程学部讲师.主要研究方向为计算机视觉和模式识别.E-mail:dcjeong@dlut.edu.cn

    杨亚飞  大连理工大学电子信息与电气工程学部硕士研究生.主要研究方向为模式识别.E-mail:yangyafei@mail.dlut.edu.cn

    通讯作者:

    韩敏  大连理工大学电子信息与电气工程学部教授.主要研究方向为模式识别, 复杂系统建模与分析及时间序列预测.本文通信作者.E-mail:minhan@dlut.edu.cn

A Shape Distance Learning Algorithm Based on Generalized Mean First-passage Time

Funds: 

Fundamental Research Funds for the Central Universities DUT14RC (3)128

National Natural Science Foundation of China 61374154

More Information
    Author Bio:

    Lecturer at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. His research interest covers computer vision and pattern recognition

    Master student at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. His main research interest is pattern recognition

    Corresponding author: HAN Min Professor at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. Her research interest covers pattern recognition, modeling and analysis of complex system, and time series prediction. Corresponding author of this paper
  • 摘要: 形状距离学习是形状匹配框架中引入的后处理步骤, 能够有效改善逐对计算得到的形状间距离.利用期望首达时间分析形状间相似度可能导致距离更新不准确, 针对这一问题提出了一种基于广义期望首达时间 (Generalized mean first-passage time, GMFPT) 的形状距离学习方法.将形状样本集合视作状态空间, 广义期望首达时间表示质点由一个状态转移至指定状态集合所需的平均时间步长, 本文将其视作更新后的形状间距离.通过引入广义期望首达时间, 形状距离学习方法能够有效地分析上下文相关的形状相似度, 显式地挖掘样本空间流形中的最短路径, 并消除冗余上下文形状信息的影响.将所提出的方法应用到不同形状数据集中进行仿真实验, 本文方法比其他方法能够得到更准确的形状检索结果.
  • 图  1  逐对形状匹配方法可能导致错误结果的示例

    Fig.  1  An example of misunderstanding of objects caused by pairwise shape matching methods

    图  2  形状匹配方法框架

    Fig.  2  The framework for shape matching methods

    图  3  由2个类别样本对应的7个状态构成状态空间的示例

    Fig.  3  An example of state space consisting of 7 states which corresponds to the samples from 2 categories

    图  4  Tari-1000数据集中部分类别形状样本示例

    Fig.  4  Examples of shapes from different categories in Tari-1000 database

    图  5  MPEG-7数据集中部分类别形状样本示例

    Fig.  5  Examples of shapes from different categories in MPEG-7 database

    表  1  Kimia-216数据集在不同方法下检索结果比较

    Table  1  Comparison of retrieval rates for different algorithms tested on Kimia-216 database

    方法 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 全部
    SC 216 216 215 210 210 209 208 204 200 191 175 2 254
    IDSC 216 216 215 211 211 210 211 207 203 198 185 2 283
    SC + LP 216 216 214 212 211 211 215 209 209 206 197 2 316
    IDSC + LP 216 216 214 211 213 213 212 210 207 208 203 2 323
    SC + MD 215 215 215 213 212 212 214 211 211 209 208 2 335
    IDSC + MD 215 215 215 211 212 213 212 212 207 209 209 2 330
    SC + MFPT 216 216 216 212 212 212 212 212 212 211 212 2 343
    IDSC + MFPT 216 216 216 212 212 212 212 212 212 212 212 2 344
    SC + GMFPT 216 216 216 216 216 216 216 216 216 216 216 2 376
    IDSC + GMFPT 216 216 216 216 216 216 216 216 216 216 216 2 376
    下载: 导出CSV

    表  2  Tari-1000数据集在不同方法下的结果比较

    Table  2  Comparison of results for different algorithms tested on Tari-1000 database

    方法 检索精度 (%)
    SC 88.01
    IDSC 90.43
    SC + LP 94.22
    IDSC + LP 96.44
    SC + MD 94.98
    IDSC + MD 98.49
    SC + MFPT 97.02
    IDSC + MFPT 99.11
    SC + GMFPT 97.15
    IDSC + GMFPT 99.27
    下载: 导出CSV

    表  3  MPEG-7数据集在不同方法下的结果比较

    Table  3  Comparison of results for different algorithms tested on MPEG-7 database

    方法 检索精度 (Bullseye) (%)
    IDSC + LP[5] 91.61
    SC + GM + Meta Descriptor[10] 92.51
    IDSC + LCDP[6] 93.32
    IDSC + Mutual Graph[22] 93.40
    SC + MFPT[13] 94.04
    ASC + LCDP[8] 95.96
    ASC + TPG Diffusion[11] 96.47
    SC + IDSC + Co-transduction[23] 97.72
    IDSC + SSC+LCDP[9] 98.85
    AIR + TPG Diffusion[11] 99.99
    AIR + Generic Diffusion Framework[12] 100.00
    AIR + GMFPT 100.00
    下载: 导出CSV

    表  4  不同方法下的时间复杂度比较

    Table  4  Comparison of the time complexities for different algorithms

    方法 时间复杂度
    LP[5] ${\rm O}\left(I_tN'^2\right)$
    LCDP[6] ${\rm O}\left(I_tN^3\right)$
    MFPT[13] ${\rm O}\left(N'^3\right)$
    TPG diffusion[11] ${\rm O}\left(I_tN^3\right)$
    Generic diffusion framework[12] ${\rm O}\left(I_tN^3\right)$
    GMFPT ${\rm O} \left(I_eN_C^3\right)$
    下载: 导出CSV
  • [1] Hu R X, Jia W, Ling H B, Zhao Y, Gui J. Angular pattern and binary angular pattern for shape retrieval. IEEE Transactions on Image Processing, 2014, 23(3):1118-1127 doi: 10.1109/TIP.2013.2286330
    [2] Hong B W, Soatto S. Shape matching using multiscale integral invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1):151-160 doi: 10.1109/TPAMI.2014.2342215
    [3] 周瑜, 刘俊涛, 白翔.形状匹配方法研究与展望.自动化学报, 2012, 38(6):889-910 doi: 10.3724/SP.J.1004.2012.00889

    Zhou Yu, Liu Jun-Tao, Bai Xiang. Research and perspective on shape matching. Acta Automatica Sinica, 2012, 38(6):889-910 doi: 10.3724/SP.J.1004.2012.00889
    [4] Hasanbelliu E, Sanchez G L, Principe J C. Information theoretic shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12):2436-2451 doi: 10.1109/TPAMI.2014.2324585
    [5] Bai X, Yang X W, Latecki L J, Liu W Y, Tu Z W. Learning context-sensitive shape similarity by graph transduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5):861-874 doi: 10.1109/TPAMI.2009.85
    [6] Yang X W, Koknar-Tezel S, Latecki L J. Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009. 357-364
    [7] Yang X W, Bai X, Latecki L J, Tu Z W. Improving shape retrieval by learning graph transduction. In:Proceedings of the 10th European Conference on Computer Vision. Marseille, France:Springer, 2008. 788-801
    [8] Ling H B, Yang X W, Latecki L J. Balancing deformability and discriminability for shape matching. In:Proceedings of the 11th European Conference on Computer Vision. Crete, Greece:Springer, 2010. 411-424
    [9] Premachandran V, Kakarala R. Perceptually motivated shape context which uses shape interiors. Pattern Recognition, 2013, 46(8):2092-2102 doi: 10.1016/j.patcog.2013.01.030
    [10] Egozi A, Keller Y, Guterman H. Improving shape retrieval by spectral matching and meta similarity. IEEE Transactions on Image Processing, 2010, 19(5):1319-1327 doi: 10.1109/TIP.2010.2040448
    [11] Yang X W, Prasad L, Latecki L J. Affinity learning with diffusion on tensor product graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):28-38 doi: 10.1109/TPAMI.2012.60
    [12] Donoser M, Bischof H. Diffusion processes for retrieval revisited. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA:IEEE, 2013. 1320-1327
    [13] 郑丹晨, 韩敏.基于期望首达时间的形状距离学习算法.自动化学报, 2014, 40(1):92-99 http://www.aas.net.cn/CN/abstract/abstract18270.shtml

    Zheng Dan-Chen, Han Min. Learning shape distance based on mean first-passage time. Acta Automatica Sinica, 2014, 40(1):92-99 http://www.aas.net.cn/CN/abstract/abstract18270.shtml
    [14] Wang J Y, Li Y P, Bai X, Zhang Y, Wang C, Tang N. Learning context-sensitive similarity by shortest path propagation. Pattern Recognition, 2011, 44(10-11):2367-2374 doi: 10.1016/j.patcog.2011.02.007
    [15] Hopcroft J, Tarjan R. Efficient algorithms for graph manipulation. Communications of the ACM, 1973, 16(6):372-378 doi: 10.1145/362248.362272
    [16] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4):509-522 doi: 10.1109/34.993558
    [17] Ling H B, Jacobs D W. Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2):286-299 doi: 10.1109/TPAMI.2007.41
    [18] Gopalan R, Turaga P, Chellappa R. Articulation-invariant representation of non-planar shapes. In:Proceedings of the 11th European Conference on Computer Vision. Crete, Greece:Springer, 2010. 286-299
    [19] Sebastian T B, Klein P N, Kimia B B. Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5):550-571 doi: 10.1109/TPAMI.2004.1273924
    [20] Baseski E, Erdem A, Tari S. Dissimilarity between two skeletal trees in a context. Pattern Recognition, 2009, 42(3):370-385 doi: 10.1016/j.patcog.2008.05.022
    [21] Latecki L J, Lakamper R, Eckhardt T. Shape descriptors for non-rigid shapes with a single closed contour. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, USA:IEEE, 2000, 1:424-429
    [22] Kontschieder P, Donoser M, Bischof H. Beyond pairwise shape similarity analysis. In:Proceedings of the 9th Asian Conference on Computer Vision. Xi'an, China:Springer, 2010. 655-666
    [23] Bai X, Wang B, Yao C, Liu W Y, Tu Z W. Co-transduction for shape retrieval. IEEE Transactions on Image Processing, 2012, 21(5):2747-2757 doi: 10.1109/TIP.2011.2170082
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1822
  • HTML全文浏览量:  314
  • PDF下载量:  844
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-02
  • 录用日期:  2015-10-28
  • 刊出日期:  2016-02-01

目录

    /

    返回文章
    返回