2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多关系蛋白质网络构建及其应用研究

胡赛 熊慧军 李学勇 赵碧海 倪问尹 杨品红 刘臻

胡赛, 熊慧军, 李学勇, 赵碧海, 倪问尹, 杨品红, 刘臻. 多关系蛋白质网络构建及其应用研究. 自动化学报, 2015, 41(12): 2155-2163. doi: 10.16383/j.aas.2015.c150187
引用本文: 胡赛, 熊慧军, 李学勇, 赵碧海, 倪问尹, 杨品红, 刘臻. 多关系蛋白质网络构建及其应用研究. 自动化学报, 2015, 41(12): 2155-2163. doi: 10.16383/j.aas.2015.c150187
HU Sai, XIONG Hui-Jun, LI Xue-Yong, ZHAO Bi-Hai, NI Wen-Yin, YANG Pin-Hong, LIU Zhen. Construction of Multi-relation Protein Networks and Its Application. ACTA AUTOMATICA SINICA, 2015, 41(12): 2155-2163. doi: 10.16383/j.aas.2015.c150187
Citation: HU Sai, XIONG Hui-Jun, LI Xue-Yong, ZHAO Bi-Hai, NI Wen-Yin, YANG Pin-Hong, LIU Zhen. Construction of Multi-relation Protein Networks and Its Application. ACTA AUTOMATICA SINICA, 2015, 41(12): 2155-2163. doi: 10.16383/j.aas.2015.c150187

多关系蛋白质网络构建及其应用研究

doi: 10.16383/j.aas.2015.c150187
基金项目: 

国家自然科学基金(11501054),湖南省自然科学基金(13JJ4106,14JJ3138),湖南省教育厅项目(10C0408,15C0124),湖南省科技计划项目(2010FJ3044,2015GK3072),水产高效健康生产湖南省协同创新中心资助

详细信息
    作者简介:

    胡赛长沙学院数学与计算机科学系副教授. 2003 年获得湖南大学数学与计量经济学院硕士学位. 主要研究方向为数理统计. E-mail: husaiccsu@163.com

    通讯作者:

    赵碧海博士, 长沙学院数学与计算机科学系副教授.2014 年获得中南大学信息学院博士学位.主要研究方向为生物信息学, 数据挖掘.本文通信作者.

Construction of Multi-relation Protein Networks and Its Application

Funds: 

Supported by National Natural Science Foundation of China (11501054), Natural Science Foundation of Hunan Province (13JJ4106, 14JJ3138), National Scientific Research Foundation of Hunan Province (10C0408, 15C0124), Science and Technology Plan Project of Hunan Province (2010FJ3044, 2015GK3072), and Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province

  • 摘要: 考虑到不同类型的相互作用对于功能预测的作用各不相同, 结合蛋白质相互作用网络和蛋白质结构域信息构建多关系蛋白质网络, 并为每种类型的相互作用赋予不同的遍历优先级.基于多关系网络, 提出一种蛋白质功能预测方法FPM (Functions prediction based on multi-relational networks).对于未注释的蛋白质, 算法遍历与该蛋白质相连的, 具有最高优先级的所有相互作用, 形成一个候选邻居节点集合.最后根据邻居节点集合形成预测的功能集合, 并为每一项功能评分、排序.与其他算法对比结果表明, FPM方法的性能优于其他的功能预测方法.
  • [1] Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nature Biotechnology, 2000, 18(12): 1257-1261
    [2] Hishigaki H, Nakai K, Ono T, Tanigami A, Takagi T. Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast, 2001, 18(6): 523-531
    [3] Chua H N, Sung W K, Wong L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics, 2006, 22(13): 1623-1630
    [4] Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 2005, 21(S1): i302-i310
    [5] Chi X X, Hou J Y. An iterative approach of protein function prediction. BMC Bioinformatics, 2011, 12: 437
    [6] Lee J, Gross S P, Lee J. Improved network community structure improves function prediction. Scientific Reports, 2013, 3: 2197
    [7] Cozzetto D, Buchan D W A, Bryson K, Jones D T. Protein function prediction by massive integration of evolutionary analyses and multiple data sources. BMC Bioinformatics, 2013, 14(S3): article S1
    [8] Kourmpetis Y A I, van Dijk A D J, ter Braak C J F. Gene Ontology consistent protein function prediction: the FALCON algorithm applied to six eukaryotic genomes. Algorithms for Molecular Biology, 2013, 8(1): 10
    [9] Zhang S, Chen H, Liu K, Sun Z R. Inferring protein function by domain context similarities in protein-protein interaction networks. BMC Bioinformatics, 2009, 10(1): 395
    [10] Peng W, Wang J X, Cai J, Lu C, Li M, Wu F X. Improving protein function prediction using domain and protein complexes in PPI networks. BMC Systems Biology, 2014, 8(1): 35
    [11] Liang S D, Zheng D D, Standley D M, Guo H R, Zhang C. A novel function prediction approach using protein overlap networks. BMC Systems Biology, 2013, 7(1): 61
    [12] Ding Zhao-Yun, Zhou Bin, Jia Yan, Zhang Lu-Min. Topical influence analysis based on the multi-relational network in microblogs. Journal of Computer Research and Development, 2013, 50(10): 2155-2175(丁兆云, 周斌, 贾焰, 张鲁民. 微博中基于多关系网络的话题层次影响力分析. 计算机研究与发展, 2013, 50(10): 2155-2175)
    [13] Zhou T, Wang Y L. Causal relationship inference for a large-scale cellular network. Bioinformatics, 2010, 26(16): 2020-2028
    [14] Zhao B H, Wang J X, Li M, Wu F X, Pan Y. Detecting protein complexes based on uncertain graph model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(3): 486-497
    [15] Zhao B H, Wang J X, Li M, Wu F X, Pan Y. Prediction of essential proteins based on overlapping essential modules. IEEE Transactions on NanoBioscience, 2014, 13(4): 415-424
    [16] Ji Jun-Zhong, Liu Zhi-Jun, Liu Hong-Xin, Liu Chun-Nian. An overview of research on functional module detection for protein-protein interaction networks. Acta Automatica Sinica, 2014, 40(4): 577-593(冀俊忠, 刘志军, 刘红欣, 刘椿年. 蛋白质相互作用网络功能模块检测的研究综述. 自动化学报, 2014, 40(4): 577-593)
    [17] The UniProt Consortium. Update on activities at the universal protein resource (UniProt) in 2013. Nucleic Acids Research, 2013, 41(D1): D43-D47
    [18] Lima T, Auchincloss A H, Coudert E, Keller G, Michoud K, Rivoire C, Bulliard V, de Castro E, Lachaize C, Baratin D, Phan I, Bougueleret L, Bairoch A. HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Research, 2009, 37(S1): D471-D478
    [19] Wasson T, Hartemink A J. An ensemble model of competitive multi-factor binding of the genome. Genome Research, 2009, 19(11): 2101-2112
    [20] Hawkins T, Chitale M, Luban S, Kihara D. PFP: automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins: Structure, Function, and Bioinformatics, 2009, 74(3): 566-582
  • 加载中
计量
  • 文章访问数:  1637
  • HTML全文浏览量:  110
  • PDF下载量:  1313
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-10
  • 修回日期:  2015-09-23
  • 刊出日期:  2015-12-20

目录

    /

    返回文章
    返回