[1]
|
Sadollah A, Eskandar H, Kim J H. Water cycle algorithm for solving constrained multi-objective optimization problems. Applied Soft Computing, 2015, 27: 279-298
|
[2]
|
Zuo Xing-Quan, Wang Chun-Lu, Zhao Xin-Chao. Combining multi-objective immune algorithm and linear programming for double row layout problem. Acta Automatica Sinica, 2015, 41(3): 528-540(左兴权, 王春露, 赵新超. 一种结合多目标免疫算法和线性规划的双行设备布局方法. 自动化学报, 2015, 41(3): 528-540)
|
[3]
|
Zhong Yun-Feng. Multi-objective Optimizated Applications in the Safety Design of Vehicle Collision [Master dissertation], Hunan University, China, 2013.(钟云锋. 多目标优化在汽车碰撞安全性设计中的应用[硕士学位论文], 湖南大学, 中国, 2013.)
|
[4]
|
Jin Y C, Sendhoff B. A systems approach to evolutionary multiobjective structural optimization and beyond. IEEE Computational Intelligence Magazine, 2009, 4(3): 62-76
|
[5]
|
Douguet D. e-LEA3D: a computational-aided drug design web server. Nucleic Acids Research, 2010, 38(Suppl 2): W615-W621
|
[6]
|
Gong D W, Ji X F, Sun J, Sun X Y. Interactive evolutionary algorithms with decision-maker's preferences for solving interval multi-objective optimization problems. Neurocomputing, 2014, 137: 241-251
|
[7]
|
Li Fang-Yi, Li Guang-Yao, Zheng Gang. Uncertain multi-objective optimization method based on interval. Chinese Journal of Solid Mechanics, 2010, 31(1): 86-93(李方义, 李光耀, 郑刚. 基于区间的不确定多目标优化方法研究. 固体力学学报, 2010, 31(1): 86-93)
|
[8]
|
Sun Jing. Genetic Algorithms for Solving Multi-objective Optimization Problems with Interval Parameters [Ph.D. dissertation], University of Mining and Technology, China, 2012.(孙靖. 用于区间参数多目标优化问题的遗传算法[博士学位论文]. 中国矿业大学, 中国, 2012.)
|
[9]
|
Chen Zhi-Wang, Chen Lin. Improved NSGA-II for constrained multi-objective optimization problems with interval numbers. Journal of Chinese Computer Systems, 2014, 35(11): 2502-2506(陈志旺, 陈林. 求解约束多目标区间优化问题的改进NSGA-II. 小型微型计算机系统, 2014, 35(11): 2502-2506)
|
[10]
|
Zhang L C. A framework to model big data driven complex cyber physical control systems. In: Proceedings of the 20th International Conference on Automation and Computing (ICAC). Cranfield, UK: IEEE, 2014. 283-288
|
[11]
|
Gambi A, Hummer W, Dustdar S. Testing elastic systems with surrogate models. In: Proceedings of the 1st International Workshop on Combining Modelling and Search-Based Software Engineering (CMSBSE). San Francisco, USA: IEEE, 2013. 8-11
|
[12]
|
Ho T Q, Ogawa H, Bil C. Investigation on effective sampling strategy for multi-objective design optimization of RBCC propulsion systems via surrogate-assisted evolutionary algorithms. Procedia Engineering, 2015, 99: 1252-1262
|
[13]
|
Zhang Q F, Liu W D, Tsang E, Virginas B. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 456-474
|
[14]
|
Goel T, Vaidyanathan R, Haftka R T, Shyy W, Queipo N V, Tucker K. Response surface approximation of Pareto optimal front in multi-objective optimization. Computer Methods in Applied Mechanics and Engineering, 2007, 196(4-6): 879-893
|
[15]
|
Zhou Z Z, Ong Y S, Nair P B, Keane A J, Lum K Y. Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(1): 66-76
|
[16]
|
Li S Z, Liu X J, Yuan G. Supervisory predictive control of weighted least square support vector machine based on Cauchy distribution. In: Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC). Changsha, China: IEEE, 2014. 3523-3526
|
[17]
|
Mlakar M, Petelin D, Tuşar T, Filipiç B. GP-DEMO: differential evolution for multiobjective optimization based on Gaussian process models. European Journal of Operational Research, 2015, 243(2): 347-361
|
[18]
|
Guo Guan-Qi, Yin Cheng, Zeng Wen-Jing, Li Wu, Yan Tai-Shan. Prediction of Pareto dominance by cross similarity of equivalent components. Acta Automatica Sinica, 2014, 40(1): 33-40(郭观七, 尹呈, 曾文静, 李武, 严太山. 基于等价分量交叉相似性的Pareto支配性预测. 自动化学报, 2014, 40(1): 33-40)
|
[19]
|
Zhang Q F, Zhou A M, Jin Y C. RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 41-63
|
[20]
|
Zhou A M, Jin Y C, Zhang Q F, Sendhoff B, Tsang E. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC). Vancouver, BC: IEEE, 2006. 892-899
|
[21]
|
Chen X M, Zhang C Y, Zhou Z X. Improve recognition performance by hybridizing principal component analysis (PCA) and elastic bunch graph matching (EBGM). In: Proceedings of the 2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP). Orlando, FL: IEEE, 2014. 1-5
|
[22]
|
Jiang Chao. Theories and Algorithms of Uncertain Optimization Based on Interval [Ph.D. dissertation], Hunan University, China, 2008.(姜潮. 基于区间的不确定性优化理论与算法[博士学位论文], 湖南大学, 中国, 2008.)
|
[23]
|
Zhang Xiao-Hui, Dai Guan-Zhong, Xu Nai-Ping. Study on diversity of population in genetic algorithms. Control Theory and Application, 1998, 15(1): 17-23 (张晓缋, 戴冠中, 徐乃平. 遗传算法种群多样性的分析研究. 控制理论与应用, 1998, 15(1): 17-23)
|
[24]
|
Zhang Yong, Gong Dun-Wei, Hao Guo-Sheng, Jiang Yu-Qing. Particle swarm optimization for multi-objective systems with interval parameters. Acta Automatica Sinica, 2008, 34(8): 921-928 (张勇, 巩敦卫, 郝国生, 蒋余庆. 含区间参数多目标系统的微粒群优化算法. 自动化学报, 2008, 34(8): 921-928)
|