2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有Markov跳变参数的闭环供应链系统切换控制

李庆奎 李梅 贾新春

李庆奎, 李梅, 贾新春. 具有Markov跳变参数的闭环供应链系统切换控制. 自动化学报, 2015, 41(12): 2081-2091. doi: 10.16383/j.aas.2015.c140526
引用本文: 李庆奎, 李梅, 贾新春. 具有Markov跳变参数的闭环供应链系统切换控制. 自动化学报, 2015, 41(12): 2081-2091. doi: 10.16383/j.aas.2015.c140526
LI Qing-Kui, LI Mei, JIA Xin-Chun. Switching Control of Closed-loop Supply Chain Systems with Markovian Jumping Parameters. ACTA AUTOMATICA SINICA, 2015, 41(12): 2081-2091. doi: 10.16383/j.aas.2015.c140526
Citation: LI Qing-Kui, LI Mei, JIA Xin-Chun. Switching Control of Closed-loop Supply Chain Systems with Markovian Jumping Parameters. ACTA AUTOMATICA SINICA, 2015, 41(12): 2081-2091. doi: 10.16383/j.aas.2015.c140526

具有Markov跳变参数的闭环供应链系统切换控制

doi: 10.16383/j.aas.2015.c140526
基金项目: 

国家自然科学基金(61573230,61374059),教育部留学回国人员科研启动基金(2013-47),山西省自然科学基金(2013011035-3),山西省留学回国人员科技活动择优资助项目(2013)资助

详细信息
    作者简介:

    李梅山西大学数学科学学院硕士研究生. 主要研究方向为网络化供应链系统. E-mail: feiyang 0418@163.com

    通讯作者:

    李庆奎山西大学数学科学学院副教授.主要研究方向为切换时滞系统, 网络控制系统及供应链系统.本文通信作者.

Switching Control of Closed-loop Supply Chain Systems with Markovian Jumping Parameters

Funds: 

Supported by National Natural Science Foundation of China (61573230, 61374059), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2013-47), Natural Science Foundation of Shanxi Province (2013011035-3), and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (2013)

  • 摘要: 研究具有 Markov 跳变参数的闭环供应链(Closed-loop supply chain, CLSC)切换系 统建模以及具有抑制牛鞭效应的H∞控制问题. 针对再制造过程中的不确定性问题, 在考虑库存衰减因素的条件下, 根据库存水平的不同状态将系统建模为切换系统, 子系统间的切换服从 于一个Markov过程. 基于输入滞后的控制策略, 应用Markov切换思想对 系统进行控制器设计与性能分析, 在保证闭环供应链系统稳定的情形 下有效抑制牛鞭效应. 仿真例子说明所得结果的有效性.
  • [1] Amezquita T, Bras B. Lean remanufacture of an automobile clutch. In: Proceedings of 1st International Working Seminar on Reuse. Eindhoven, The Netherlands, 1996.
    [2] Robot T L. The remanufacturing industry: hidden giant. Research Report, Manufacturing Engineering Department, Boston University, Technical Report, 1996.
    [3] Savaskan R C, Bhattacharya S, van Wassenhove L N. Closed-loop supply chain models with product remanufacturing. Management Science, 2004, 50(2): 239-252
    [4] Hong I H, Yeh J S. Modeling closed-loop supply chains in the electronics industry: a retailer collection application. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(4): 817-829
    [5] Kiesmüller G P. Optimal control of a one product recovery system with leadtimes. International Journal of Production Economics, 2003, 81-82(5): 333-340
    [6] Seierstad A, Sydsæ ter K. Optimal Control Theory with Economic Applications (3rd Edition). Amsterdam: North-Holland, 1987.
    [7] Kleber R, Minner S, Kiesmüller G. A continuous time inventory model for a product recovery system with multiple options. International Journal of Production Economics, 2002, 79(2): 121-141
    [8] Guide V D R, van Wassenhove L N. Closed-loop supply chains: an introduction to the feature issue (Part 1). Production and Operations Management, 2006, 15(3): 345-350
    [9] Guide V D R, van Wassenhove L N. Closed-loop supply chains: an introduction to the feature issue (Part 2). Production and Operations Management, 2006, 15(4): 471-472
    [10] Pishvaee M S, Rabbani M, Torabi S A. A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 2011, 35(2): 637-649
    [11] Hammond D, Beullens P. Closed-loop supply chain network equilibrium under legislation. European Journal of Operational Research, 2007, 183(2): 895-908
    [12] Wei J, Zhao J. Reverse channel decisions for a fuzzy closed-loop supply chain. Applied Mathematical Modelling, 2013, 37(3): 1502-1513
    [13] Özkir V, Başligil H. Multi-objective optimization of closed-loop supply chains in uncertain environment. Journal of Cleaner Production, 2013, 41: 114-125
    [14] El-Sayed M, Afia N, El-Kharbotly A. A stochastic model for forward-reverse logistics network design under risk. Computers & Industrial Engineering, 2010, 58(3): 423-431
    [15] Dobos I. Optimal production-inventory strategies for a HMMS-type reverse logistics system. International Journal of Production Economics, 2003, 81-82: 351-360
    [16] Rodrigues L, Boukas E K. Piecewise-linear H∞ controller synthesis with applications to inventory control of switched production systems. Automatica, 2006, 42(8): 1245-1254
    [17] Bauso D, Blanchini F, Pesenti R. Robust control strategies for multi-inventory systems with average flow constraints. Automatica, 2006, 42(8): 1255-1266
    [18] Sarimveis H, Patrinos P, Tarantilis C D, Kiranoudis C T. Dynamic modeling and control of supply chain systems: a review. Computers & Operations Research, 2008, 35(11): 3530-3561
    [19] Huang Xiao-Yuan, Ge Ru-Gang. Survey of dynamic supply chain and control. Control and Decision, 2008, 23(11): 1201-1204(黄小原, 葛汝刚. 动态供应链与控制问题研究进展. 控制与决策, 2008, 23(11): 1201-1204)
    [20] Lou Shan-Zuo, Tian Xin-Cheng. Modeling and control for inventory with stochastic supply disruptions and returns. Acta Automatica Sinica, 2014, 40(11): 2436-2444(娄山佐, 田新诚. 随机供应中断和退货环境下库存问题的建模与控制. 自动化学报, 2014, 40(11): 2436-2444
    [21] Lou Shan-Zuo, Tian Xin-Cheng. Contingent control of inventory under stochastic supply disruptions and returns. Acta Automatica Sinica, 2015, 41(1): 94-103(娄山佐, 田新诚. 随机供应中断和退货环境下库存的应急控制. 自动化学报, 2015, 41(1): 94-103
    [22] Zhao X D, Liu X W, Yin S, Li H Y. Improved results on stability of continuous-time switched positive linear systems. Automatica, 2014, 50(2): 614-621
    [23] Long L J, Zhao J. A small-gain theorem for switched interconnected nonlinear systems and its applications. IEEE Transactions on Automatic Control, 2014, 59(4): 1082-1088
    [24] Boukas E K, Zhang Q, Yin G. Robust production and maintenance planning in stochastic manufacturing systems. IEEE Transactions on Automatic Control, 1995, 40(6): 1098-1102
    [25] Lemos J M, Pinto L F. Distributed linear-quadratic control of serially chained systems: application to a water delivery canal. IEEE Control Systems, 2012, 32(6): 26-38
    [26] Nandola N N, Rivera D E. An improved formulation of hybrid model predictive control with application to production-inventory systems. IEEE Transactions on Control Systems Technology, 2013, 21(1): 121-135
    [27] Lee H L, Padmanabhan V, Whang S. The bullwhip effect in supply chains. Sloan Management Review, 1997, 38(3): 93-102
    [28] Towill D R, Zhou L, Disney S M. Reducing the bullwhip effect: looking through the appropriate lens. International Journal of Production Economics, 2007, 108(1-2): 444-453
    [29] Huang X Y, Yan N N, Guo H F. An H∞ control method of the bullwhip effect for a class of supply chain system. International Journal of Production Research, 2007, 45(1): 207-226
    [30] Boccadoro M, Martinelli F, Valigi P. Supply chain management by H∞ control. IEEE Transactions on Automation Science and Engineering, 2008, 5(4): 703-707
    [31] Stadtler H. Supply chain management: an overview. Supply Chain Management and Advanced Planning. Berlin Heidelberg: Springer, 2015. 3-28
    [32] Udenio M, Fransoo J C, Peels R. Destocking, the bullwhip effect, and the credit crisis: empirical modeling of supply chain dynamics. International Journal of Production Economics, 2015, 160: 34-46
    [33] Cao Y Y, Lam J. Robust H∞ control of uncertain markovian jump systems with time-delay. IEEE Transactions on Automatic Control, 2000, 45(1): 77-83
    [34] Boukas E K, Liu Z K. Robust H∞ control of discrete-time markovian jump linear systems with mode-dependent time-delays. IEEE Transactions on Automatic Control, 2001, 46(12): 1918-1924
    [35] Wang Guo-Liang, Bo Hai-Ying. Stabilization of singular markovian jump systems with general switching. Acta Automatica Sinica, 2015, 41(1): 216-220(王国良, 薄海英. 广义马氏跳变系统在一般转移速率下的控制器设计. 自动化学报, 2015, 41(1): 216-220)
    [36] Xie L H. Output feedback H∞ control of systems with parameter uncertainty. International Journal of Control, 1996, 63(4): 741-750
    [37] Mao X R. Exponential Stability of Stochastic Differential Equations. New Delhi, India: CRC Press, 1994.
    [38] Huang Xiao-Yuan, Yan Ni-Na, Qiu Ruo-Zhen. Dynamic models of closed-loop supply chain & robust H∞ control strategies with time-delay & parameter uncertainty. Computer Integrated Manufacturing Systems, 2007, 13(7): 1313-1321(黄小原, 晏妮娜, 邱若臻. 一类参数和时滞不确定的闭环供应链动态模型与鲁棒H∞控制. 计算机集成制造系统, 2007, 13(7): 1313-1321)
    [39] Jayaram S, Kapoor S G, DeVor R E. Analytical stability analysis of variable spindle speed machining. Journal of Manufacturing Science and Engineering, 2000, 122(3): 391-397
  • 加载中
计量
  • 文章访问数:  1791
  • HTML全文浏览量:  65
  • PDF下载量:  1197
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-14
  • 修回日期:  2015-09-23
  • 刊出日期:  2015-12-20

目录

    /

    返回文章
    返回