2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于DIOCVA的过程监控方法

曹玉苹 黄琳哲 田学民

曹玉苹, 黄琳哲, 田学民. 一种基于DIOCVA的过程监控方法. 自动化学报, 2015, 41(12): 2072-2080. doi: 10.16383/j.aas.2015.c150058
引用本文: 曹玉苹, 黄琳哲, 田学民. 一种基于DIOCVA的过程监控方法. 自动化学报, 2015, 41(12): 2072-2080. doi: 10.16383/j.aas.2015.c150058
CAO Yu-Ping, HUANG Lin-Zhe, TIAN Xue-Min. A Process Monitoring Method Using Dynamic Input-output Canonical Variate Analysis. ACTA AUTOMATICA SINICA, 2015, 41(12): 2072-2080. doi: 10.16383/j.aas.2015.c150058
Citation: CAO Yu-Ping, HUANG Lin-Zhe, TIAN Xue-Min. A Process Monitoring Method Using Dynamic Input-output Canonical Variate Analysis. ACTA AUTOMATICA SINICA, 2015, 41(12): 2072-2080. doi: 10.16383/j.aas.2015.c150058

一种基于DIOCVA的过程监控方法

doi: 10.16383/j.aas.2015.c150058
基金项目: 

国家自然科学基金(61273160,61403418),山东省自然科学基金(ZR2014FL016),中央高校基本科研业务费专项资金(14CX02174A)资助

详细信息
    作者简介:

    黄琳哲中国石油工程建设公司华东设计分公司助理工程师. 主要研究方向为过程故障诊断.E-mail: joeyseraph@gmail.com

    通讯作者:

    曹玉苹中国石油大学(华东) 信息与控制工程学院讲师.主要研究方向为过程故障诊断与预测.本文通信作者.

A Process Monitoring Method Using Dynamic Input-output Canonical Variate Analysis

Funds: 

Supported by National Natural Science Foundation of China (61273160, 61403418), Natural Science Foundation of Shandong Province (ZR2014FL016) and the Fundamental Research Funds for the Central Universities (14CX02174A)

  • 摘要: 传统基于典型变量分析的过程监控方法无法判断故障是否影响产 品质量.为此,本文提出一种基于动态输入输出典型变量分析(Dynamic input-output canonical variate analysis, DIOCVA)的过程监控方法.该方法利用典型变量分析提取数据之间的相关性,并进一步考虑方差信息和时序相关性, 将过程数据和质量数据映射到5个子空间:输入输出相关子空间,不相关输入主元子空间, 不相关输入残差子空间,不相关输出主元子空间和不相关输出残差 子空间.所提方法能够精细区分影响质量的过程故障和不影响质量的过程故障.以Tennessee Eastman过程为例对所提方法的有效性进行了验证.
  • [1] Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. London: Springer-Verlag, 2001. 35-98
    [2] Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943(周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943)
    [3] Zhou Dong-Hua, Shi Jian-Tao, He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2014, 40(2): 161-171(周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述. 自动化学报, 2014, 40(2): 161-171)
    [4] Li Yue-Yang, Zhong Mai-Ying. Fault detection filter design for linear discrete time-varying systems with multiple packet dropouts. Acta Automatica Sinica, 2015, 41(9): 1638-1648(李岳炀, 钟麦英. 具有多测量数据包丢失的线性离散时变系统故障检测滤波器设计. 自动化学报, 2015, 41(9): 1638-1648)
    [5] Wang Jing, Hu Yi, Shi Hong-Bo. Fault detection for batch processes based on Gaussian mixture model. Acta Automatica Sinica, 2015, 41(5): 899-905(王静, 胡益, 侍洪波. 基于GMM的间歇过程故障检测. 自动化学报, 2015, 41(5): 899-905)
    [6] Li Han, Xiao De-Yun. Survey on data driven fault diagnosis methods. Control and Decision, 2011, 26(1): 1-9(李晗, 萧德云. 基于数据驱动的故障诊断方法综述. 控制与决策, 2011, 26(1): 1-9)
    [7] Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2): 220-234
    [8] Ge Z Q, Song Z H, Gao F R. Review of recent research on data-based process monitoring. Industrial and Engineering Chemistry Research, 2013, 52(10): 3543-3562
    [9] Yin S, Ding S X, Xie X C, Luo H. A review on basic data-driven approaches for industrial process monitoring. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6418-6428
    [10] Ding S X. Data-driven design of monitoring and diagnosis systems for dynamic processes: a review of subspace technique based schemes and some recent results. Journal of Process Control, 2014, 24(2): 431-449
    [11] Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis. Journal of Process Control, 2012, 22(3): 551-563
    [12] Russell E L, Chiang L H, Braatz R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 81-93
    [13] Juricek B C, Seborg D E, Larimore W E. Fault detection using canonical variate analysis. Industrial and Engineering Chemistry Research, 2004, 43(2): 458-474
    [14] Stubbs S, Zhang J, Morris J. Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach. Computers and Chemical Engineering, 2012, 41: 77-87
    [15] Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59(1): 223-234
    [16] Deng X G, Tian X M. Multivariate statistical process monitoring using multi-scale kernel principal component analysis. In: Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Beijing, China: IFAC, 2006. 108-113
    [17] Tian X M, Zhang X L, Deng X G, Chen S. Multiway kernel independent component analysis based on feature samples for batch process monitoring. Neurocomputing, 2009, 72(7-9): 1584-1596
    [18] Deng Xiao-Gang, Tian Xue-Min. Nonlinear process fault diagnosis based on kernel canonical variate analysis. Control and Decision, 2006, 21(10): 1109-1113(邓晓刚, 田学民. 基于核规范变量分析的非线性故障诊断方法. 控制与决策, 2006, 21(10): 1109-1113)
    [19] Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196
    [20] Stefatos G, Ben H A. Dynamic independent component analysis approach for fault detection and diagnosis. Expert Systems with Applications, 2010, 37(12): 8606-8617
    [21] Wang D, Romagnoli J A. Robust multi-scale principal components analysis with applications to process monitoring. Journal of Process Control, 2005, 15(8): 869-882
    [22] Cai L F, Tian X M, Chen S. A process monitoring method based on noisy independent component analysis. Neurocomputing, 2014, 127: 231-246
    [23] Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59(2): 496-504
    [24] Gunther J C, Conner J S, Seborg D E. Process monitoring and quality variable prediction utilizing PLS in industrial fed-batch cell culture. Journal of Process Control, 2009, 19(5): 914-921
    [25] Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56(1): 168-178
    [26] Sun R R, Fan Y P, Zhang Y W. Fault monitoring of nonlinear process based on kernel concurrent projection to latent structures. In: Proceedings of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014. 5184-5189
    [27] Liu Q, Qin S J, Chai T Y. Quality-relevant monitoring and diagnosis with dynamic concurrent projection to latent structures. In: Proceedings of the 19th International Federation of Automatic Control World Congress. Cape Town, South Africa: IFAC, 2014. 2740-2745
    [28] Liu Q, Qin S J, Chai T Y. Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6429-6437
    [29] Zhao Z G, Li Q H, Huang M, Liu F. Concurrent PLS-based process monitoring with incomplete input and quality measurements. Computers and Chemical Engineering, 2014, 67: 69-82
    [30] Odiowei P P, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems, 2010, 103(1): 59-65
    [31] Lyman P R, Georgakis C. Plant-wide control of the Tennessee Eastman problem. Computers and Chemical Engineering, 1995, 19(3): 321-331
  • 加载中
计量
  • 文章访问数:  1825
  • HTML全文浏览量:  99
  • PDF下载量:  1139
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-10-19
  • 刊出日期:  2015-12-20

目录

    /

    返回文章
    返回