[1]
|
Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. London: Springer-Verlag, 2001. 35-98
|
[2]
|
Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943(周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943)
|
[3]
|
Zhou Dong-Hua, Shi Jian-Tao, He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2014, 40(2): 161-171(周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述. 自动化学报, 2014, 40(2): 161-171)
|
[4]
|
Li Yue-Yang, Zhong Mai-Ying. Fault detection filter design for linear discrete time-varying systems with multiple packet dropouts. Acta Automatica Sinica, 2015, 41(9): 1638-1648(李岳炀, 钟麦英. 具有多测量数据包丢失的线性离散时变系统故障检测滤波器设计. 自动化学报, 2015, 41(9): 1638-1648)
|
[5]
|
Wang Jing, Hu Yi, Shi Hong-Bo. Fault detection for batch processes based on Gaussian mixture model. Acta Automatica Sinica, 2015, 41(5): 899-905(王静, 胡益, 侍洪波. 基于GMM的间歇过程故障检测. 自动化学报, 2015, 41(5): 899-905)
|
[6]
|
Li Han, Xiao De-Yun. Survey on data driven fault diagnosis methods. Control and Decision, 2011, 26(1): 1-9(李晗, 萧德云. 基于数据驱动的故障诊断方法综述. 控制与决策, 2011, 26(1): 1-9)
|
[7]
|
Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2): 220-234
|
[8]
|
Ge Z Q, Song Z H, Gao F R. Review of recent research on data-based process monitoring. Industrial and Engineering Chemistry Research, 2013, 52(10): 3543-3562
|
[9]
|
Yin S, Ding S X, Xie X C, Luo H. A review on basic data-driven approaches for industrial process monitoring. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6418-6428
|
[10]
|
Ding S X. Data-driven design of monitoring and diagnosis systems for dynamic processes: a review of subspace technique based schemes and some recent results. Journal of Process Control, 2014, 24(2): 431-449
|
[11]
|
Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis. Journal of Process Control, 2012, 22(3): 551-563
|
[12]
|
Russell E L, Chiang L H, Braatz R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 81-93
|
[13]
|
Juricek B C, Seborg D E, Larimore W E. Fault detection using canonical variate analysis. Industrial and Engineering Chemistry Research, 2004, 43(2): 458-474
|
[14]
|
Stubbs S, Zhang J, Morris J. Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach. Computers and Chemical Engineering, 2012, 41: 77-87
|
[15]
|
Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59(1): 223-234
|
[16]
|
Deng X G, Tian X M. Multivariate statistical process monitoring using multi-scale kernel principal component analysis. In: Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Beijing, China: IFAC, 2006. 108-113
|
[17]
|
Tian X M, Zhang X L, Deng X G, Chen S. Multiway kernel independent component analysis based on feature samples for batch process monitoring. Neurocomputing, 2009, 72(7-9): 1584-1596
|
[18]
|
Deng Xiao-Gang, Tian Xue-Min. Nonlinear process fault diagnosis based on kernel canonical variate analysis. Control and Decision, 2006, 21(10): 1109-1113(邓晓刚, 田学民. 基于核规范变量分析的非线性故障诊断方法. 控制与决策, 2006, 21(10): 1109-1113)
|
[19]
|
Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196
|
[20]
|
Stefatos G, Ben H A. Dynamic independent component analysis approach for fault detection and diagnosis. Expert Systems with Applications, 2010, 37(12): 8606-8617
|
[21]
|
Wang D, Romagnoli J A. Robust multi-scale principal components analysis with applications to process monitoring. Journal of Process Control, 2005, 15(8): 869-882
|
[22]
|
Cai L F, Tian X M, Chen S. A process monitoring method based on noisy independent component analysis. Neurocomputing, 2014, 127: 231-246
|
[23]
|
Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59(2): 496-504
|
[24]
|
Gunther J C, Conner J S, Seborg D E. Process monitoring and quality variable prediction utilizing PLS in industrial fed-batch cell culture. Journal of Process Control, 2009, 19(5): 914-921
|
[25]
|
Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56(1): 168-178
|
[26]
|
Sun R R, Fan Y P, Zhang Y W. Fault monitoring of nonlinear process based on kernel concurrent projection to latent structures. In: Proceedings of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014. 5184-5189
|
[27]
|
Liu Q, Qin S J, Chai T Y. Quality-relevant monitoring and diagnosis with dynamic concurrent projection to latent structures. In: Proceedings of the 19th International Federation of Automatic Control World Congress. Cape Town, South Africa: IFAC, 2014. 2740-2745
|
[28]
|
Liu Q, Qin S J, Chai T Y. Multiblock concurrent PLS for decentralized monitoring of continuous annealing processes. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6429-6437
|
[29]
|
Zhao Z G, Li Q H, Huang M, Liu F. Concurrent PLS-based process monitoring with incomplete input and quality measurements. Computers and Chemical Engineering, 2014, 67: 69-82
|
[30]
|
Odiowei P P, Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems, 2010, 103(1): 59-65
|
[31]
|
Lyman P R, Georgakis C. Plant-wide control of the Tennessee Eastman problem. Computers and Chemical Engineering, 1995, 19(3): 321-331
|