2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于监督非相干字典学习的极化SAR图像舰船目标检测

文伟 王英华 冯博 刘宏伟

文伟, 王英华, 冯博, 刘宏伟. 基于监督非相干字典学习的极化SAR图像舰船目标检测. 自动化学报, 2015, 41(11): 1926-1940. doi: 10.16383/j.aas.2015.c140530
引用本文: 文伟, 王英华, 冯博, 刘宏伟. 基于监督非相干字典学习的极化SAR图像舰船目标检测. 自动化学报, 2015, 41(11): 1926-1940. doi: 10.16383/j.aas.2015.c140530
WEN Wei, WANG Ying-Hua, FENG Bo, LIU Hong-Wei. Supervised Incoherent Dictionary Learning for Ship Detection withPolSAR Images. ACTA AUTOMATICA SINICA, 2015, 41(11): 1926-1940. doi: 10.16383/j.aas.2015.c140530
Citation: WEN Wei, WANG Ying-Hua, FENG Bo, LIU Hong-Wei. Supervised Incoherent Dictionary Learning for Ship Detection withPolSAR Images. ACTA AUTOMATICA SINICA, 2015, 41(11): 1926-1940. doi: 10.16383/j.aas.2015.c140530

基于监督非相干字典学习的极化SAR图像舰船目标检测

doi: 10.16383/j.aas.2015.c140530
基金项目: 

国家自然科学基金(61201292,61322103,61372132),全国优秀博士学位论文作者专项资金资助项目(FANEDD-201156),中央高校基本科研业务费专项资金资助

详细信息
    作者简介:

    文伟 西安电子科技大学雷达信号处理国家重点实验室博士研究生.2010年获得西安电子科技大学机电工程学院学士学位.主要研究方向为雷达目标检测.E-mail:wenwei8114@163.com

    冯博 西安电子科技大学雷达信号处理国家重点实验室博士.2015年获得西安电子科技大学电子工程学院博士学位.主要研究方向为雷达目标识别.E-mail:ivyleague007@126.com

    刘宏伟 西安电子科技大学电子工程学院教授.主要研究方向为雷达信号处理,MIMO雷达,雷达目标识别,自适应信号处理,认知雷达.E-mail:hwliu@xidian.edu.cn

    通讯作者:

    王英华 西安电子科技大学电子工程学院副教授.2010年获得西安交通大学控制科学与工程专业博士学位.主要研究方向为合成孔径雷达自动目标识别,极化SAR数据解译,SAR图像处理.本文通信作者.E-mail:yhwang@xidian.edu.cn

Supervised Incoherent Dictionary Learning for Ship Detection withPolSAR Images

Funds: 

Supported by National Natural Science Foundation of China (61201292, 61322103, 61372132), Program for New Century Excellent Talents in University (FANEDD-201156), and the Fundamental Research Funds for the Central Universities

  • 摘要: 提出了一种结构化非相干字典学习算法 (Structured incoherent dictionary learning, SIDL),并将该方法应用于极化SAR (Polarimetric synthetic aperture radar, PoLSAR)图像舰船目标检测. 在字典学习阶段,构建了一个新的目标函数,为了降低子字典对交叉样本的稀疏表示能力, 将子字典对交叉样本的重构能量约束及子字典互相干性约束加入到字典学习目标函数中. 通过这两个约束, 降低了子字典对交叉样本的表示能力,目标和杂波的极化特征矢量在学习获得的字典下具有良好的区分特性. 该方法不依赖于目标后向散射能量,只利用学习获得的极化字典,根据测试样本在极化字典下的稀疏表示进行目标的检测. 实验采用RADARSAT-2数据进行了验证,对比实验结果表明,本文提出的方法可以更好地抑制杂波,对弱小目标实现检测,获得了更好的检测效果.
  • [1] Crisp D J. The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery, Technical Report DSTO-RR-0272, DSTO Information Sciences Laboratory, South Australia, Australia, 2004.
    [2] [2] Rey M T, Drosopoulos A, Petrovic D. A Search Procedure for Ships in RADARSAT Imagery, Technical Report 1996-1305, Defence Research Establishment Ottawa, Ottawa, Canada, 1996.
    [3] [3] Gao G. The Research on Automatic Acquirement of Target's ROI from SAR Imagery[Ph.D. dissertation], National University of Defense Technology, China, 2007.
    [4] [4] Novak L M, Burl M C, Irving W W. Optimal polarimetric processing for enhanced target detection. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1):234-244
    [5] [5] Yang J, Cui Y. A novel method for ship detection in polarimetric SAR images using GOPCE. In:Proceedings of the 2009 IET international Radar conference. Guilin, China:IET, 2009. 1-5
    [6] [6] Novak L M, Burl M C. Optimal speckle reduction in Pol-SAR imagery and its effect on target detection. In:Proceedings of the 1989 SPIE 1101 Millimeter Wave and Synthetic Aperture Radar. Orlando, USA:SPIE, 1989.
    [7] [7] Lee J S, Hoppel K W, Mango S A, Miller A R. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5):1017-1028
    [8] [8] Ringrose R, Harris N. Ship detection using polarimetric SAR data. In:Proceedings of the 2000 SAR Workshop:CEOS Committee on Earth Observation Satellites; Working Group on Calibration and Validation. Toulouse, France:European Space Agency, 2000. 687-691
    [9] [9] Yeremy M, Campbell J W M, Mattar K, Potter T. Ocean surveillance with polarimetric SAR. Canadian Journal of Remote Sensing, 2001, 27(4):328-344
    [10] Marino A, Cloude S R, Woodhouse I H. Detecting depolarized targets using a new geometrical perturbation filter. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3787-3799
    [11] Wang N, Shi G T, Liu L, Zhao L J, Kuang G Y. Polarimetric SAR target detection using the reflection symmetry. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6):1104-1108
    [12] Liu Gao-Feng, Li Ming, Wang Ya-Jun, Zhang Peng. A novel freeman decomposition based on nonnegative eigenvalue decomposition with non-reflection symmetry. Journal of Electronics Information Technology, 2013, 35(2):368-375(刘高峰, 李明, 王亚军, 张鹏. 一种新的基于非反射对称非负特征值分解的Freeman分解. 电子与信息学报, 2013, 35(2):368-375)
    [13] El-Darymli K, McGuire P, Power D, Moloney C. Target detection in synthetic aperture radar imagery:a state-of-the-art survey. Journal of Applied Remote Sensing, 2013, 7(1):071598
    [14] Wright J, Yang A Y, Ganesh A, Sastry S S, Yi M. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(2):210-227
    [15] Yang M, Zhang L, Feng X C, Zhang D. Fisher discrimination dictionary learning for sparse representation. In:Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona:IEEE, 2011. 543-550
    [16] Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Discriminative learned dictionaries for local image analysis. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK:IEEE, 2008. 1-8
    [17] Rubinstein R, Bruckstein A M, Elad M. Dictionaries for sparse representation modeling. Proceedings of the IEEE, 2010, 98(6):1045-1057
    [18] Ma Xiao-Hu, Tan Yan-Qi. Face recognition based on discriminant sparsity preserving embedding. Acta Automatica Sinica, 2014, 40(1):73-82(马小虎, 谭延琪. 基于鉴别稀疏保持嵌入的人脸识别算法. 自动化学报, 2014, 40(1):73-82)
    [19] Ren Yue-Mei, Zhang Yan-Ning, Li Ying. Advances and perspective on compressed sensing and application on image processing. Acta Automatica Sinica, 2014, 40(8):1563-1575(任越美, 张艳宁, 李映. 压缩感知及其图像处理应用研究进展与展望. 自动化学报, 2014, 40(8):1563-1575)
    [20] Lian Qiu-Sheng, Shi Bao-Shun, Chen Shu-Zhen. Research advances on dictionary learning models, algorithms and applications. Acta Automatica Sinica, 2015, 41(2):240-260(练秋生, 石保顺, 陈书贞. 字典学习模型、算法及其应用研究进展. 自动化学报, 2015, 41(2):240-260)
    [21] Ramirez I, Sprechmann P, Sapiro G. Classification and clustering via dictionary learning with structured incoherence and shared features. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA:IEEE, 2010. 3501-3508
    [22] Wang Y H, Liu H W. PolSAR ship detection based on superpixel-level scattering mechanism distribution features. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8):1780-1784
    [23] Wang Y H, Liu H W, Wen W, Ding J. PolSAR ship detection based on low-rank dictionary learning and sparse representation. In:Proceedings of the 2014 IEEE International Radar Conference. Lille:IEEE, 2014. 1-6
    [24] Elad M. Sparse and Redundant Representations:from Theory to Applications in Signal and Image Processing. New York:Springer, 2010. 17-21
    [25] Mairal J, Bach F, Ponce J. Task-driven dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4):791-803
    [26] Zibulevsky M, Elad M. L1-L2 optimization in signal and image processing. IEEE Signal Processing Magazine, 2010, 27(3):76-88
    [27] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, 57(11):1413-1457
    [28] Elad M, Matalon B, Zibulevsky M. Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization. Applied and Computational Harmonic Analysis, 2007, 23(3):346-367
    [29] Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322
    [30] Novak L M, Sechtin M B, Cardullo M J. Studies of target detection algorithms that use polarimetric radar data. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2):150-165
    [31] Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):963-973
  • 加载中
计量
  • 文章访问数:  1957
  • HTML全文浏览量:  97
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-15
  • 修回日期:  2015-07-27
  • 刊出日期:  2015-11-20

目录

    /

    返回文章
    返回