[1]
|
Zhang Yong-Gang, Huang Yu-Long, Zhao Lin. A general framework solution of Gaussian filter with multiple step randomly delayed measurements. Acta Automatica Sinica, 2015, 41(1):122-135(张勇刚, 黄玉龙, 赵琳. 一种带多步随机延迟量测高斯滤波器的一般框架解. 自动化学报, 2015, 41(1):122-135)
|
[2]
|
[2] Lei M, van Wyk B J, Qi Y. Online estimation of the approximate posterior Cramer-Rao lower bound for discrete-time nonlinear filtering. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1):37-57
|
[3]
|
Zhang Yong-Gang, Huang Yu-Long, Li Ning, Zhao Lin. Conditional posterior Cramr-Rao lower bound for nonlinear sequential Bayesian estimation with one-step randomly delayed measurements. Acta Automatica Sinica, 2015, 41(3):559-574(张勇刚, 黄玉龙, 李宁, 赵琳. 带一步随机延迟量测非线性序列贝叶斯估计的条件后验克拉美罗下界. 自动化学报, 2015, 41(3):559-574)
|
[4]
|
[4] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269
|
[5]
|
[5] Arasaratnam I, Haykin S. Cubature Kalman smoothers. Automatica, 2011, 47(10):2245-2250
|
[6]
|
[6] Sarmavuori J, Srkk S. Fourier-Hermite Kalman filter. IEEE Transactions on Automatic Control, 2012, 57(6):1511-1515
|
[7]
|
[7] Sarmavuori J, Srkk S. Fourier-Hermite Rauch-Tung-Striebel smoother. In:Proceedings of the 20th European Signal Processing Conference. Bucharest, Romania:IEEE, 2012. 2109-2113
|
[8]
|
[8] Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter. Automatica, 2013, 49(2):510-518
|
[9]
|
[9] Jia B, Xin M. A new class of nonlinear Rauch-Tung-Striebel cubature Kalman smoothers. ISA Transactions, 2015, 55(3):72-80
|
[10]
|
Zhang Yong-Gang, Huang Yu-Long, Wu Zhe-Min, Li Ning. A high order unscented Kalman filtering method. Acta Automatica Sinica, 2014, 40(5):838-848(张勇刚, 黄玉龙, 武哲民, 李宁. 一种高阶无迹卡尔曼滤波方法. 自动化学报, 2014, 40(5):838-848)
|
[11]
|
Jia B, Xin M, Cheng Y. Sparse-grid quadrature nonlinear filtering. Automatica, 2012, 48(2):327-341
|
[12]
|
Dunk J, Straka O, imandl M. Stochastic integration filter. IEEE Transactions on Automatic Control, 2013, 58(6):1561-1566
|
[13]
|
Zhang X C. A novel cubature Kalman filter for nonlinear state estimation. In:Proceedings of the 2013 IEEE 52nd Annual Conference on Decision and Control. Firenze:IEEE, 2013. 7797-7802
|
[14]
|
Zhang Y G, Huang Y L, Li N, Zhao L. Embedded cubature Kalman filter with adaptive setting of free parameter. Signal Processing, 2015, 114:112-116
|
[15]
|
Wang S Y, Feng J C, Tse C K. Spherical simplex-radial cubature Kalman filter. IEEE Signal Processing Letters, 2014, 21(1):43-46
|
[16]
|
Chang L B, Hu B Q, Li A, Qin F J. Transformed unscented Kalman filter. IEEE Transactions on Automatic Control, 2013, 58(1):252-257
|
[17]
|
Ljung L. Perspectives on system identification. In:Proceedings of the 17th IFAC World Congress. Seoul, Korea:IFAC, 2008. 7172-7184
|
[18]
|
Gaperin M, Juričić D. Application of unscented transformation in nonlinear system identification. In:Proceedings of the 18th IFAC World Congress. Milano, Italy:IFAC, 2011. 4428-4433
|
[19]
|
Zhao Lin, Wang Xiao-Xu, Sun Ming, Ding Ji-Cheng, Yan Chao. Adaptive UKF filtering algorithm based on maximum a posterior estimation and exponential weighting. Acta Automatica Sinica, 2010, 36(7):1007-1019(赵琳, 王小旭, 孙明, 丁继成, 闫超. 基于极大后验估计和指数加权的自适应UKF滤波算法. 自动化学报, 2010, 36(7):1007-1019)
|
[20]
|
Zhao L Q, Wang J L, Yu T, Jian H, Liu T J. Design of adaptive robust square-root cubature Kalman filter with noise statistic estimator. Applied Mathematics and Computation, 2015, 256:352-367
|
[21]
|
Wang Lu, Li Guang-Chun, Qiao Xiang-Wei, Wang Zhao-Long, Ma Tao. An adaptive UKF algorithm based on maximum likelihood principle and expectation maximization algorithm. Acta Automatica Sinica, 2012, 38(7):1200-1210(王璐, 李光春, 乔相伟, 王兆龙, 马涛. 基于极大似然准则和最大期望算法的自适应UKF算法. 自动化学报, 2012, 38(7):1200-1210)
|
[22]
|
Bavdekar V A, Deshpande A P, Patwardhan S C. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. Journal of Process Control, 2011, 21(4):585-601
|
[23]
|
Schn T B, Wills A, Ninness B. System identification of nonlinear state-space models. Automatica, 2011, 47(1):39-49
|
[24]
|
Vnnen V. Gaussian Filtering and Smoothing based Parameter Estimation in Nonlinear Models for Sequential Data[Master dissertation], Aalto University, Finland, 2012
|
[25]
|
Kokkala J, Solin A, Srkk S. Expectation maximization based parameter estimation by sigma-point and particle smoothing. In:Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain:IEEE, 2014. 1-8
|
[26]
|
Wu W R, Chang D C. Maneuvering target tracking with colored noise. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4):1311-1320
|
[27]
|
Srinivasan S, Aichner R, Kleijn W B, Kellermann W. Multi-channel parametric speech enhancement. IEEE Signal Processing Letters, 2006, 13(5):304-307
|
[28]
|
Jamoos A, Grivel E, Bobillet W, Guidorzi R. Errors-in-variables-based approach for the identification of AR time-varying fading channels. IEEE Signal Processing Letters, 2007, 14(11):793-796
|
[29]
|
Mahmoudi A, Karimi M, Amindavar H. Parameter estimation of autoregressive signals in presence of colored AR(1) noise as a quadratic eigenvalue problem. Signal Processing, 2012, 92(4):1151-1156
|
[30]
|
Wang Xiao-Xu, Liang Yan, Pan Quan, Zhao Chun-Hui, Li Han-Zhou. Unscented Kalman filter for nonlinear systems with colored measurement noise. Acta Automatica Sinica, 2012, 38(6):986-998(王小旭, 梁彦, 潘泉, 赵春晖, 李汉舟. 带有色量测噪声的非线性系统Unscented卡尔曼滤波器. 自动化学报, 2012, 38(6):986-998)
|
[31]
|
Wang X X, Pan Q. Nonlinear Gaussian filter with the colored measurement noise. In:Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain:IEEE, 2014. 1-7
|
[32]
|
Wang X X, Liang Y, Pan Q, Zhao C H, Yang F. Nonlinear Gaussian smoothers with colored measurement noise. IEEE Transactions on Automatic Control, 2015, 60(3):870-876
|
[33]
|
Yuan G N, Xie Y J, Song Y, Liang H B. Multipath parameters estimation of weak GPS signal based on new colored noise unscented Kalman filter. In:Proceedings of the 2010 IEEE International Conference on Information and Automation. Harbin, China:IEEE, 2010. 1852-1856
|
[34]
|
Titterton D H, Weston J L. Strapdown Inertial Navigation Technology. London:Peter Peregrinus, Ltd., 1997.
|
[35]
|
Goto S, Nakamura M, Uosaki K. On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor. IEEE Transactions on Signal Processing, 1995, 43(6):1519-1522
|
[36]
|
Giurcăneanu C D, Razavi S A. AR order selection in the case when the model parameters are estimated by forgetting factor least-squares algorithms. Signal Processing, 2010, 90(2):451-466
|
[37]
|
Kok M, Dahlin J, Schn T B, Wills A. Newton-based maximum likelihood estimation in nonlinear state space models. In:Proceedings of the 17th IFAC Symposium on System Identification. IFAC, 2015
|
[38]
|
Poyiadjis G, Doucet A, Singh S S. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika, 2011, 98(1):65-80
|
[39]
|
Li X R. Measure of nonlinearity for stochastic systems. In:Proceedings of the 15th International Conference on Information Fusion. Singapore:IEEE, 2012. 1073-1080
|
[40]
|
Bucy R S, Senne K D. Digital synthesis of non-linear filters. Automatica, 1971, 7(3):287-298
|
[41]
|
Dunik J, Simandl M, Straka O. Unscented Kalman filter:aspects and adaptive setting of scaling parameter. IEEE Transactions on Automatic Control, 2012, 57(9):2411-2416
|
[42]
|
Einicke G A, White L B. Robust extended Kalman filtering. IEEE Transactions on Signal Processing, 1999, 47(9):2596-2599
|
[43]
|
Li W L, Jia Y M. H-infinity filtering for a class of nonlinear discrete-time systems based on unscented transform. Signal Processing, 2010, 90(12):3301-3307
|
[44]
|
Jia B, Xin M. Sparse-grid quadrature H_{} filter for discrete-time systems with uncertain noise statistics. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3):1626-1636
|