2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动力学与控制统一模型的蛇形机器人速度跟踪控制方法研究

郭宪 马书根 李斌 王明辉 王越超

郭宪, 马书根, 李斌, 王明辉, 王越超. 基于动力学与控制统一模型的蛇形机器人速度跟踪控制方法研究. 自动化学报, 2015, 41(11): 1847-1856. doi: 10.16383/j.aas.2015.c140285
引用本文: 郭宪, 马书根, 李斌, 王明辉, 王越超. 基于动力学与控制统一模型的蛇形机器人速度跟踪控制方法研究. 自动化学报, 2015, 41(11): 1847-1856. doi: 10.16383/j.aas.2015.c140285
GUO Xian, MA Shu-Gen, LI Bin, WANG Ming-Hui, WANG Yue-Chao. Velocity Tracking Control of a Snake-like Robot with a Dynamics and Control Unified Model. ACTA AUTOMATICA SINICA, 2015, 41(11): 1847-1856. doi: 10.16383/j.aas.2015.c140285
Citation: GUO Xian, MA Shu-Gen, LI Bin, WANG Ming-Hui, WANG Yue-Chao. Velocity Tracking Control of a Snake-like Robot with a Dynamics and Control Unified Model. ACTA AUTOMATICA SINICA, 2015, 41(11): 1847-1856. doi: 10.16383/j.aas.2015.c140285

基于动力学与控制统一模型的蛇形机器人速度跟踪控制方法研究

doi: 10.16383/j.aas.2015.c140285
基金项目: 

国家自然科学基金(61333016)资助

详细信息
    作者简介:

    郭宪 中国科学院沈阳自动化研究所博士研究生.主要研究方向为蛇形机器人动力学建模与控制.E-mail:guoxian@sia.cn

    马书根 日本立命馆大学机器人系教授,同时为中国科学院沈阳自动化研究所研究员.主要研究方向为仿生机器人,防灾救援机器人,环境适应机构学.E-mail:shugen@se.ritsumei.ac.jp

    李斌 中国科学院沈阳自动化研究所研究员.主要研究方向为仿生机器人,移动机器人,机器人控制.E-mail:libin@sia.cn

    王越超中国科学院沈阳自动化研究所研究员.主要研究方向为机器人学.E-mail:ycwang@sia.cn

    通讯作者:

    王明辉 中国科学院沈阳自动化研究所研究员.主要研究方向为移动机器人,机器人控制,多机器人协作.本文通信作者.E-mail:mhwang@sia.cn

Velocity Tracking Control of a Snake-like Robot with a Dynamics and Control Unified Model

Funds: 

Supported by National Natural Science Foundation of China (61333016)

  • 摘要: 对带有被动轮的蛇形机器人进行速度跟踪控制时,利用传统的动力学建模方法得到的动力学方程复杂且不利于控制器的设计. 本文基于微分几何的方法将带有被动轮的蛇形机器人动力学投影到速度分布空间中, 得到了动力学与控制统一模型, 更有利于速度跟踪控制器的设计. 考虑到蛇形机器人在进行速度跟踪时容易出现奇异位形, 提出增加头部扰动速度的方法. 基于头部扰动速度和统一模型, 提出避免奇异位形的速度跟踪控制方法, 最后通过逆向动力学得到控制力矩. 文中对速度跟踪控制进行了数值仿真和实验验证. 仿真和实验结果表明, 提出的速度跟踪控制方法能够跟踪想要方向的速度, 并且在跟踪过程中可以有效地避免奇异位形.
  • [1] Rezapour E, Pettersen K Y, Liljeback P, Gravdahl J T. Differential geometric modelling and robust path following control of snake robots using sliding mode techniques. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China:IEEE, 2014. 4532-4539
    [2] [2] Rezapour E, Hofmann A, Pettersen K Y. Maneuvering control of planar snake robots based on a simplified model. In:Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). Bali, Indonesia:IEEE, 2014. 548-555
    [3] [3] Porez M, Boyer F, Ljspeert A J. Improved lighthill fish swimming model for bio-inspired robots:modeling, computational aspects and experimental comparisons. The International Journal of Robotics Research, 2014, 31(10):1322-1341
    [4] Yang Gui-Zhi, Ma Shu-Gen, Li Bin, Wang Ming-Hui. A hierarchical connectionist central pattern generator model for controlling three-dimensional gaits of snake-like robots. Acta Automatica Sinica, 2013, 39(10):1611-1622(杨贵志, 马书根, 李斌, 王明辉. 面向蛇形机器人的三维步态控制的层次化联结中枢模式生成器模型. 自动化学报, 2013, 39(10):1611-1622)
    [5] [5] Mohammadi A, Rezapour E, Maggiore M, Pettrsen K Y. Direction following control of planar snake robots using virtual holonomic constraints. In:Proceedings of the 53rd Annual Conference on Decision and Control (CDC). Los Angeles, CA:IEEE, 2014. 3801-3808
    [6] [6] Tanaka M, Tanaka K. Control of a snake robot for ascending and descending steps. IEEE Transactions on Robotics, 2015, 31(2):511-520
    [7] [7] Murray R M, Sastry S S. Nonholonomic motion planning:steering using sinusoids. IEEE Transactions on Automatic Control, 1993, 38(5):700-716
    [8] [8] Leonard N E, Krishnaprasad P S. Motion control of drift-free, left-invariant systems on Lie groups. IEEE Transactions on Automatic Control, 1995, 40(9):1539-1554
    [9] [9] Lafferriere G, Sussmann H. Motion planning for controllable systems without drift. In:Proceedings of the 1991 IEEE International Conference on Robotics and Automation. Sacramento, CA:IEEE, 1991. 1148-1153
    [10] Morin P, Pomet J-B, Samson C. Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of Lie brackets in closed loop. SIAM Journal on Control and Optimization, 1999, 38(1):22-49
    [11] Prautsch P, Mita T. Control and analysis of the gait of snake robots. In:Proceedings of the 1999 IEEE International Conference on Control Applications. Kohala Coast, HI:IEEE, 1999. 502-507
    [12] Matsuno F, Mogi K. Redundancy controllable system and control of snake robots based on kinematic model. In:Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, NSW:IEEE, 2000. 4791-4796
    [13] Matsuno F, Sato H. Trajectory tracking control of snake robots based on dynamic model. In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005. 3029-3034
    [14] Ishikawa M. Iterative feedback control of snake-like robot based on principal fiber bundle modeling. International Journal of Advanced Mechatronic Systems, 2009, 1(3):175-182
    [15] Ishikawa M, Owaki K, Shinagawa M, Sygie T. Control of snake-like robot based on nonlinear controllability analysis. In:Proceedings of the 2010 IEEE International Conference on Control Applications (CCA). Yokohama, Japan:IEEE 2010. 1134-1139
    [16] Date H, Hoshi Y, Sampei M. Locomotion control of a snake-like robot based on dynamic manipulability. In:Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu, Japan:IEEE, 2000. 2236-2241
    [17] Date H, Hoshi Y, Sampei M, Nakaura S. Locomotion control of a snake robot with constraint force attenuation. In:Proceedings of the 2001 American Control Conference. Arlington, VA:IEEE, 2001. 113-118
    [18] Guo Xian, Wang Ming-Hui, Li Bin, Ma Shu-Gen, Wang Yue-Chao. Optimal torque control of a snake-like robot based on the minimum infinity norm. Robot, 2014, 36(1):8-13(郭宪, 王明辉, 李斌, 马书根, 王越超. 基于最小无穷范数的蛇形机器人最优力矩控制. 机器人, 2014, 36(1):8-13)
    [19] Guo X, Ma S G, Li B, Wang M H, Wang Y C. Modeling and optimal torque control of a snake-like robot based on the fiber bundle theory. Science China Information Sciences, 2015, 58(3):1-13
    [20] Maruskin J M, Bloch A M, Marsden J E, Zenkov D V. A fiber bundle approach to the transpositional relations in nonholonomic mechanics. Journal of Nonlinear Science, 2012, 22(4):431-461
    [21] Bloch A M, Marsden J E, Zenkov D V. Quasivelocities and symmetries in non-holonomic systems. Dynamical Systems, 2009, 24(2):187-222
    [22] Su C Y, Stepanenko Y. Robust motion/force control of mechanical systems with classical nonholonomic constraints. IEEE Transactions on Automatic Control, 1994, 39(3):609-614
    [23] Guo X, Ma S G, Li B, Wang M H. Locomotion control of a snake-like robot based on velocity disturbance. In:Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). Bali, Indonesia:IEEE, 2014. 582-587
    [24] Bullo F, Zefran M. On mechanical control systems with nonholonomic constraints and symmetries. Systems Control Letters, 2002, 45(2):133-143
    [25] Dragovic V, Gajic B. The Wagner curvature tensor in nonholonomic mechanics. Regular and Chaotic Dynamics, 2003, 8(1):105-123
  • 加载中
计量
  • 文章访问数:  1687
  • HTML全文浏览量:  79
  • PDF下载量:  879
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-24
  • 修回日期:  2015-06-13
  • 刊出日期:  2015-11-20

目录

    /

    返回文章
    返回