[1]
|
Go A S, Mozaffarian D, Roger V L, Benjamin E J, Berry J D, Blaha M J, Dai S, Ford E S, Fox C S, Franco S, Fullerton H J, Gillespie C, Hailpern S M, Heit J A, Howard V J, Huffman M D, Judd S E, Kissela B M, Kittner S J, Lackland D T, Lichtman J H, Lisabeth L D, Mackey R H, Magid D J, Marcus G M, Marelli A, Matchar D B, McGuire D K, Mohler E R 3rd, Moy C S, Mussolino M E, Neumar R W, Nichol G, Pandey D K, Paynter N P, Reeves M J, Sorlie P D, Stein J, Towfighi A, Turan T N, Virani S S, Wong N D, Woo D, Turner M B; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2014 update:a report from the American heart association. Circulation, 2014, 129(3):e28-e292
|
[2]
|
[2] Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2014, 11(1):3-32
|
[3]
|
Hu Jin, Hou Zeng-Guang, Chen Yi-Xiong, Zhang Feng, Wang Wei-Qun. Lower limb rehabilitation robots and interactive control methods. Acta Automatica Sinica, 2014, 40(11):2377-2390(胡进, 侯增广, 陈翼雄, 张峰, 王卫群. 下肢康复机器人及其交互控制方法. 自动化学报, 2014, 40(11):2377-2390)
|
[4]
|
[4] Buerger S P, Palazzolo J J, Krebs H I, Hogan N. Rehabilitation robotics:adapting robot behavior to suit patient needs and abilities. In:Proceedings of the 2004 American Control Conference. Boston, USA:IEEE, 2004. 3239-3244
|
[5]
|
[5] Lnenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2007, 4(1):1
|
[6]
|
[6] Lo A C, Guarino P D, Richards L G, Haselkorn J K, Wittenberg G F, Federman D G, Ringer R J, Wagner T H, Krebs H I, Volpe B T, Bever C T Jr, Bravata D M, Duncan P W, Corn B H, Maffucci A D, Nadeau S E, Conroy S S, Powell J M, Huang G D, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 2010, 362(19):1772-1783
|
[7]
|
[7] Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B, Guidali M, Kollmar A, Luft A, Nef T, Schuster-Amft C, Stahel W, Riener R. Three-dimensional, task-specific robot therapy of the arm after stroke:a multicentre, parallel-group randomised trial. The Lancet Neurology, 2014, 13(2):159-166
|
[8]
|
[8] Marchal-Crespo L, Reinkensmeyer D J. Review of control strategies for robotic movement training after neurologic injury. Journal of NeuroEngineering and Rehabilitation, 2009, 6(1):20
|
[9]
|
[9] Hu J, Hou Z G, Zhang F, Chen Y X, Li P F. Training strategies for a lower limb rehabilitation robot based on impedance control. In:Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA:IEEE, 2012. 6032-6035
|
[10]
|
Wang W Q, Hou Z G, Tong L, Chen Y X, Peng L, Tan M. Dynamics modeling and identification of the human-robot interface based on a lower limb rehabilitation robot. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China:IEEE, 2014. 6012-6017
|
[11]
|
Tong Li-Na, Hou Zeng-Guang, Peng Liang, Wang Wei-Qun, Chen Yi-Xiong, Tan Min. Multi-channel sEMG time series analysis based human motion recognition method. Acta Automatica Sinica, 2014, 40(5):810-821(佟丽娜, 侯增广, 彭亮, 王卫群, 陈翼雄, 谭民. 基于多路sEMG时序分析的人体运动模式识别方法. 自动化学报, 2014,40(5):810-821)
|
[12]
|
Zhang F, Li P F, Hou Z G, Lu Z, Chen Y X, Li Q L, Tan M. sEMG-based continuous estimation of joint angles of human legs by using BP neural network. Neurocomputing, 2012, 78(1):139-148
|
[13]
|
Artoni F, Chisari C, Menicucci D, Fanciullacci C, Micera S. REMOV:EEG artifacts removal methods during Lokomat lower-limb rehabilitation. In:Proceedings of the 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics. Roma, Italy:IEEE, 2012. 992-997
|
[14]
|
Cai L L, Fong A J, Liang Y, Burdick J, Edgerton V R. Assist-as-needed training paradigms for robotic rehabilitation of spinal cord injuries. In:Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, USA:IEEE, 2006. 3504-3511
|
[15]
|
Krebs H I, Palazzolo J J, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe B T, Hogan N. Rehabilitation robotics:Performance-based progressive robot-assisted therapy. Autonomous Robots, 2003, 15(1):7-20
|
[16]
|
Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing, 2005, 43(1):2-10
|
[17]
|
Peng L, Hou Z G, Peng L, Wang W Q. Design of CASIAARM:a novel rehabilitation robot for upper limbs. In:Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2015. 5611-5616
|
[18]
|
Li L, Baum B S. Electromechanical delay estimated by using electromyography during cycling at different pedaling frequencies. Journal of Electromyography and Kinesiology, 2004, 14(6):647-652
|
[19]
|
Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics, 2009, 24(4):327-340
|
[20]
|
Winslow J, Martinez A, Thomas C K. Automatic identification and classification of muscle spasms in long-term EMG recordings. IEEE Journal of Biomedical and Health Informatics, 2015, 19(2):464-470
|
[21]
|
Ajallooeian M, van den Kieboom J, Mukovskiy A, Giese M A, Ijspeert A J. A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Physica D:Nonlinear Phenomena, 2013, 263:41-56
|
[22]
|
Yu J Z, Tan M, Chen J, Zhang J W. A survey on CPG-inspired control models and system implementation. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(3):441-456
|
[23]
|
Righetti L, Buchli J, Ijspeert A J. Dynamic Hebbian learning in adaptive frequency oscillators. Physica D:Nonlinear Phenomena, 2006, 216(2):269-281
|
[24]
|
Righetti L, Ijspeert A J. Programmable central pattern generators:an application to biped locomotion control. In:Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, USA:IEEE, 2006. 1585-1590
|
[25]
|
Hogan N. Impedance control:an approach to manipulation. In:Proceedings of the 1984 American Control Conference. San Diego, USA:IEEE, 1984. 304-313
|
[26]
|
Yu H N. Modeling and control of hybrid machine systems:a five-bar mechanism case. International Journal of Automation and Computing, 2006, 3(3):235-243
|
[27]
|
Peng L, Hou Z G, Wang W Q. Dynamic modeling and control of a parallel upper-limb rehabilitation robot. In:Proceedings of the 2015 IEEE/RAS-EMBS International Conference on Rehabilitation Robotics. Singapore, 2015. 532-537
|
[28]
|
Winter D A. Biomechanics and Motor Control of Human Movement (4th Edition). United Kingdom:John Wiley Sons Ltd, 2009.
|
[29]
|
Hogan N. An organizing principle for a class of voluntary movements. The Journal of Neuroscience, 1984, 4(11):2745-2754
|