[1]
|
Huang Z X. Extensions to the K-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304
|
[2]
|
Jain A K, Dubes R C. Algorithms for Clustering Data. New Jersey: Prentice-Hall, 1988.
|
[3]
|
Han J, Kamber M. Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann, 2001.
|
[4]
|
Chen W F, Feng G C. Spectral clustering: a semi-supervised approach. Neurocomputing, 2012, 77(1): 229-242
|
[5]
|
Zhang W, Yoshida T, Tang X J, Wang Q. Text clustering using frequent itemsets. Knowledge-Based Systems, 2010, 23(5): 379-388
|
[6]
|
Hsu C C, Chen C L, Su Y W. Hierarchical clustering of mixed data based on distance hierarchy. Information Sciences, 2007, 177(20): 4474-4492
|
[7]
|
Hsu C C, Huang Y P. Incremental clustering of mixed data based on distance hierarchy. Expert Systems with Applications, 2008, 35(3): 1177-1185
|
[8]
|
Lloyd S P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982, 28(2): 129-137
|
[9]
|
Berget I, Mevik B H, Nas T. New modifications and applications of fuzzy C-means methodology. Computational Statistics & Data Analysis, 2008, 52(5): 2403-2418
|
[10]
|
Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Washington: ACM Press, 1998. 73-84
|
[11]
|
S. H. Cluster Analysis Algorithms. West Sussex: Ellis Horwood Limited, 1980.
|
[12]
|
Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Montreal: ACM Press, 1996. 103-114
|
[13]
|
Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of KDD. 1996. 226-232
|
[14]
|
Bi Kai, Wang Xiao-Dan, Xing Ya-Qiong. Fuzzy clustering ensemble based on fuzzy measure and DS evidence theory. Control and Decision, 2015, 30(5): 823-830 (毕凯, 王晓丹, 邢雅琼. 基于模糊测度和证据理论的模糊聚类集成方法. 控制与决策, 2015, 30(5): 823-830)
|
[15]
|
Liu Z G, Pan Q, Dezert J, Mercier G. Credal C-means clustering method based on belief functions. Knowledge-Based Systems, 2015, 74: 119-132
|
[16]
|
Huang Z X. A fast clustering algorithm to cluster very large categorical data sets in data mining. In: Research Issues on Data Mining and Knowledge Discovery. Arizona: ACM Press, 1997. 1-8
|
[17]
|
Gan G, Wu J, Yang Z. A genetic fuzzy K-modes algorithm for clustering categorical data. Expert Systems with Applications, 2009, 36(2): 1615-1620
|
[18]
|
Barbara D, Couto J, Li Y. COOLCAT: an entropy-based algorithm for categorical clustering. In: Proceedings of the 11th International Conference on Information and Knowledge Management. Virginia: ACM Press, 2002. 582-589
|
[19]
|
Huang Z X. Clustering large data sets with mixed numeric and categorical values. In: Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining. Singapore: World Scientific Publishing, 1997. 21-34
|
[20]
|
Chatzis S P. A fuzzy C-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional. Expert Systems with Applications, 2011, 38(7): 8684-8689
|
[21]
|
Gath I, Geva A B. Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 711(7): 773-780
|
[22]
|
Zheng Z, Gong M G, Ma J J, Jiao L C, Wu Q D. Unsupervised evolutionary clustering algorithm for mixed type data. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation. Barcelona: IEEE, 2010. 1-8
|
[23]
|
Li C, Biswas G. Unsupervised learning with mixed numeric and nominal data. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(4): 673-690
|
[24]
|
Goodall D W. A new similarity index based on probability. Biometrics, 1966, 22(4): 882-907
|
[25]
|
Hsu C C, Chen Y C. Mining of mixed data with application to catalog marketing. Expert Systems with Applications, 2007, 32(1): 12-23
|
[26]
|
Ahmad A, Dey L. A K-mean clustering algorithm for mixed numeric and categorical data. Data & Knowledge Engineering, 2007, 63(2): 503-527
|
[27]
|
Ji J C, Bai T, Zhou C G, Ma C, Wang Z. An improved K-prototypes clustering algorithm for mixed numeric and categorical data. Neurocomputing, 2013, 120: 590-596
|
[28]
|
Ji J C, Pang W, Zhou C G, Han X, Wang Z. A fuzzy K-prototype clustering algorithm for mixed numeric and categorical data. Knowledge-based Systems, 2012, 30: 129-135
|
[29]
|
Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science, 2014, 344(6191): 1492-1496
|
[30]
|
Wang Song-Gui, Shi Jian-Hong, Yin Su-Ju, Wu Mi-Xia. Introduction to Linear Models. Beijing: Science Press, 2004. (王松桂, 史建红, 尹素菊, 吴密霞. 线性模型引论. 北京: 科学出版社, 2004.)
|