2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直线特征的交互矩阵求取

徐德 卢金燕

徐德, 卢金燕. 直线特征的交互矩阵求取. 自动化学报, 2015, 41(10): 1762-1771. doi: 10.16383/j.aas.2015.c150097
引用本文: 徐德, 卢金燕. 直线特征的交互矩阵求取. 自动化学报, 2015, 41(10): 1762-1771. doi: 10.16383/j.aas.2015.c150097
XU De, LU Jin-Yan. Determination for Interactive Matrix of Line Feature. ACTA AUTOMATICA SINICA, 2015, 41(10): 1762-1771. doi: 10.16383/j.aas.2015.c150097
Citation: XU De, LU Jin-Yan. Determination for Interactive Matrix of Line Feature. ACTA AUTOMATICA SINICA, 2015, 41(10): 1762-1771. doi: 10.16383/j.aas.2015.c150097

直线特征的交互矩阵求取

doi: 10.16383/j.aas.2015.c150097
基金项目: 

国家自然科学基金(61227804, 61421004)资助

详细信息
    作者简介:

    卢金燕 中国科学院自动化研究所博士 研究生. 2011 年获得北京航空航天大学 计算机科学与技术专业硕士学位. 主要 研究方向为位姿检测, 视觉测量, 机器人 控制. E-mail: jinyan.lu@ia.ac.cn

    通讯作者:

    徐德 中国科学院自动化研究所研究 员. 主要研究方向为机器人和自动化, 视 觉测量, 视觉控制, 智能控制, 焊缝跟踪, 视觉定位, 显微视觉, 微装配. 本文通信 作者. E-mail: de.xu@ia.ac.cn

Determination for Interactive Matrix of Line Feature

Funds: 

Supported by National Natural Science Foundation of China (61227804, 61421004)

  • 摘要: 直线特征在视觉跟踪、视觉伺服中具有重要作用, 但目前的直线交互矩阵的求取受到制约, 需要已知含有直线的平面在摄像机坐标系中的方程参数. 为摆脱含有直线的平面参数的约束, 本文利用两点的极坐标推导出直线的交互矩阵, 并给出直线交互矩阵求取方法. 经分析得知, 对于与摄像机光轴接近垂直的直线, 其在成像平面上的角度变化主要受摄像机姿态变化的影响, 对摄像机的位置变化不敏感. 对于与摄像机光轴平行的直线, 其在成像平面上的角度变化受摄像机旋转以及垂直于光轴平移 的影响较大. 实验结果验证了本文方法的有效性.
  • [1] Lepetit V, Fua P. Monocular model-based 3D tracking of rigid objects: a survey. Foundations and Trends in Computer Graphics and Vision, 2005, 1(1): 1-89
    [2] Mooser J, You S, Neumann U, Wang Q. Applying robust structure from motion to markerless augmented reality. In: Proceedings of the 2009 IEEE Workshop on Applications of Computer Vision. Snowbird, Utah, USA: IEEE, 2009. 1-8
    [3] Liu Y H, Wang H S. An adaptive controller for image-based visual servoing of robot manipulators. In: Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA). Jinan, China: IEEE, 2010. 988-993
    [4] Wang H S, Liu, Y H, Chen W D. Visual tracking of robots in uncalibrated environments. Mechatronics, 2012, 22(4): 390 -397
    [5] Pressigout M, Marchand E. Real-time 3D model-based tracking: combining edge and texture information. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, USA: IEEE, 2006. 2726 -2731
    [6] Coutard L, Chaumette F. Visual detection and 3D model-based tracking for landing on an aircraft carrier. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 1746-1751
    [7] Drummond T, Cipolla R. Real-time visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 932-946
    [8] Petit A, Marchand E, Kanani K. A robust model-based tracker combining geometrical and color edge information. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013. 3719-3724
    [9] Vacchetti L, Lepetit V, Fua P. Combining edge and texture information for real-time accurate 3D camera tracking. In: Proceedings of the 3rd IEEE and ACM International Symposium on Mixed and Augmented Reality. Arlington, USA: IEEE, 2004. 48-56
    [10] Espiau B, Chaumette F, Rives P. A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation, 1992, 8(3): 313-326
    [11] Comport A I, Marchand E, Pressigout M, Chaumette F. Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(4): 615-628
    [12] Wuest H, Stricker D. Tracking of industrial objects by using CAD models. Journal of Virtual Reality and Broadcasting, 2007, 4(1): 1-9
    [13] Mills S, Aouf N, Mejias L. Image based visual servo control for fixed wing UAVs tracking linear infrastructure in wind. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013. 5769-5774
    [14] Xie H, Lynch A, Jagersand M. IBVS of a rotary wing UAV using line features. In: Proceedings of the 27th IEEE Canadian Conference on Electrical and Computer Engineering. Toronto, Canada: IEEE, 2014. 1-6
    [15] Coutard L, Chaumette F, Pflimlin J M. Automatic landing on aircraft carrier by visual servoing. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011. 2843 -2848
    [16] Alkhalil F, Doignon C. Stereo visual servoing with decoupling control. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Algarve, Portugal: IEEE, 2012. 1671-1676
    [17] Liu Y H, Wang H S, Chen W D, Zhou D X. Adaptive visual servoing using common image features with unknown geometric parameters. Automatica, 2013, 49(8): 2453-2460
    [18] Liu Y H, Wang H S, Wang C Y, Lam K K. Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Transactions on Robotics, 2006, 22(4): 804-817
    [19] Wang H S, Liu Y H, Zhou D X. Adaptive visual servoing using point and line features with an uncalibrated eye-in-hand camera. IEEE Transactions on Robotics, 2008, 24(4): 843-857
  • 加载中
计量
  • 文章访问数:  2064
  • HTML全文浏览量:  123
  • PDF下载量:  1306
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-02
  • 修回日期:  2015-07-07
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回