| 
	                    [1]
	                 | 
				
					Li H Z, Ma B, Lee K A. Spoken language recognition: from fundamentals to practice. Proceedings of the IEEE, 2013, 101(5): 1136-1159
					 | 
			
		
				| 
	                    [2]
	                 | 
				
					Biadsy F. Automatic dialect and accent recognition and its application to speech recognition [Ph.D. dissertation], Columbia University, USA, 2011.
					 | 
			
		
				| 
	                    [3]
	                 | 
				
					Zissman M A, Berkling K M. Automatic language identification. Speech Communication, 2001, 35(1-2): 115-124
					 | 
			
		
				| 
	                    [4]
	                 | 
				
					Muthusamy Y K, Barnard E, Cole R A. Reviewing automatic language identification. IEEE Signal Processing Magazine, 1994, 11(4): 33-41
					 | 
			
		
				| 
	                    [5]
	                 | 
				
					Campbell W M, Singer E, Torres-Carrasquillo P A, Reynolds, D A. Language recognition with support vector machines. In: Proceedings of the 2004 ODYSSEY-The Speaker and Language Recognition Workshop. Toledo, Spain: ISCA, 2004. 285-288
					 | 
			
		
				| 
	                    [6]
	                 | 
				
					Campbell W M, Campbell J P, Reynolds D A, Singer E, Torres-Carrasquillo P A. Support vector machines for speaker and language recognition. Computer Speech & Language, 2006, 20(2-3): 210-229
					 | 
			
		
				| 
	                    [7]
	                 | 
				
					Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004. 985-990
					 | 
			
		
				| 
	                    [8]
	                 | 
				
					Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122
					 | 
			
		
				| 
	                    [9]
	                 | 
				
					Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications. Neurocomputing, 2006, 70(1-3): 489-501
					 | 
			
		
				| 
	                    [10]
	                 | 
				
					Huang G B, Zhou H M, Ding X J, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42(2): 513-529
					 | 
			
		
				| 
	                    [11]
	                 | 
				
					Liang N Y, Huang G B, Saratchandran P, Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 2006, 17(6): 1411-1423
					 | 
			
		
				| 
	                    [12]
	                 | 
				
					Xu J T, Zhou H M, Huang G B. Extreme learning machine based fast object recognition. In: Proceedings of the 15th IEEE International Conference on Information Fusion. Singapore: IEEE, 2012. 1490-1496
					 | 
			
		
				| 
	                    [13]
	                 | 
				
					Sole M M, Tsoeu M S. Sign language recognition using the extreme learning machine. In: Proceedings of the 2011 IEEE AFRICON Conference. Livingstone, Zambia: IEEE, 2011. 1-6
					 | 
			
		
				| 
	                    [14]
	                 | 
				
					Suresh S, Babu V, Sundararajan N. Image quality measurement using sparse extreme learning machine classifier. In: Proceedings of the 9th IEEE International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2006. 1-6
					 | 
			
		
				| 
	                    [15]
	                 | 
				
					Horata P, Chiewchanwattana S, Sunat K. Robust extreme learning machine. Neurocomputing, 2013, 102: 31-44
					 | 
			
		
				| 
	                    [16]
	                 | 
				
					Yu Q, Miche Y, Eirola E, Van Heeswijk M, Séverin E, Lendasse A. Regularized extreme learning machine for regression with missing data. Neurocomputing, 2013, 102: 45-51
					 | 
			
		
				| 
	                    [17]
	                 | 
				
					Zong W W, Huang G B, Chen Y Q. Weighted extreme learning machine for imbalance learning. Neurocomputing, 2013, 101: 229-242
					 | 
			
		
				| 
	                    [18]
	                 | 
				
					Iosifidis A, Tefas A, Pitas I. Minimum class variance extreme learning machine for human action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(11): 1968-1979
					 | 
			
		
				| 
	                    [19]
	                 | 
				
					Tenenbaum J B, De Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323
					 | 
			
		
				| 
	                    [20]
	                 | 
				
					Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
					 | 
			
		
				| 
	                    [21]
	                 | 
				
					Huang G, Song S J, Gupta J N D, Wu C. Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 2014, 44(12): 2405-2417
					 | 
			
		
				| 
	                    [22]
	                 | 
				
					Liu B, Xia S X, Meng F R, Zhou Y. Manifold regularized extreme learning machine. Neural Computing and Applications, 2015, DOI:  10.1007/s00521-014-1777-8
					 | 
			
		
				| 
	                    [23]
	                 | 
				
					Deng W Y, Zheng Q H, Chen L. Regularized extreme learning machine. In: Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining. Nashville, USA: IEEE, 2009. 389-395
					 | 
			
		
				| 
	                    [24]
	                 | 
				
					Campbell W M, Sturim D E, Reynolds D A. Support vector machines using GMM supervectors for speaker verification. IEEE Signal Processing Letters, 2006, 13(5): 308-311
					 | 
			
		
				| 
	                    [25]
	                 | 
				
					Dehak N, Kenny P, Dehak R, Dumouchel P, Ouellet P. Front-end factor analysis for speaker verification. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4): 788-798
					 | 
			
		
				| 
	                    [26]
	                 | 
				
					Tomar V S, Rose R C. Manifold regularized deep neural networks. In: Proceedings of the 2014 Annual Conference of the International Speech Communication Association. Singapore: ISCA, 2014. 348-352
					 | 
			
		
				| 
	                    [27]
	                 | 
				
					Guan N Y, Tao D C, Luo Z G, Yuan B. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Transactions on Image Processing, 2011, 20(7): 2030-2048
					 | 
			
		
				| 
	                    [28]
	                 | 
				
					Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 2006, 7: 2399-2434
					 | 
			
		
				| 
	                    [29]
	                 | 
				
					Peng Y, Zhu J Y, Zheng W L, Lu B L. EEG-based emotion recognition with manifold regularized extreme learning machine. In: Proceedings of the 36th IEEE International Conference on Engineering in Medicine and Biology Society. San Diego, USA: IEEE, 2014. 974-977
					 | 
			
		
				| 
	                    [30]
	                 | 
				
					Wang H, Yan S C, Xu D, Tang X A, Huang T. Trace ratio vs. ratio trace for dimensionality reduction. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
					 | 
			
		
				| 
	                    [31]
	                 | 
				
					Martin A F, Greenberg C S. The 2009 NIST language recognition evaluation. In: Proceedings of the 2010 ODYSSEY-The Speaker and Language Recognition Workshop. Brno, Czech Republic: ISCA, 2010. 165-171
					 | 
			
		
				| 
	                    [32]
	                 | 
				
					Zhang W Q, Hou T, Liu J. Discriminative score fusion for language identification. Chinese Journal of Electronics, 2010, 19(1): 124-128
					 | 
			
		
				| 
	                    [33]
	                 | 
				
					Campbell W M, Sturim D E, Reynolds D A, Solomonoff A. SVM based speaker verification using a GMM supervector kernel and NAP variability compensation. In: Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, France: IEEE, 2006. 1-1
					 | 
			
		
				| 
	                    [34]
	                 | 
				
					Singer E, Torres-Carrasquillo P, Reynolds D, McCree A, Richardson F, Dehak N, Sturim D. The MITLL NIST LRE 2011 language recognition system. In: Proceedings of the 2012 The Speaker and Language Recognition Workshop. Singapore: ISCA, 2012. 209-215
					 |