2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大形变微分同胚图像配准快速算法

闫德勤 刘彩凤 刘胜蓝 刘德山

闫德勤, 刘彩凤, 刘胜蓝, 刘德山. 大形变微分同胚图像配准快速算法. 自动化学报, 2015, 41(8): 1461-1470. doi: 10.16383/j.aas.2015.c140816
引用本文: 闫德勤, 刘彩凤, 刘胜蓝, 刘德山. 大形变微分同胚图像配准快速算法. 自动化学报, 2015, 41(8): 1461-1470. doi: 10.16383/j.aas.2015.c140816
YAN De-Qin, LIU Cai-Feng, LIU Sheng-Lan, LIU De-Shan. A Fast Image Registration Algorithm for Diffeomorphic Image with Large Deformation. ACTA AUTOMATICA SINICA, 2015, 41(8): 1461-1470. doi: 10.16383/j.aas.2015.c140816
Citation: YAN De-Qin, LIU Cai-Feng, LIU Sheng-Lan, LIU De-Shan. A Fast Image Registration Algorithm for Diffeomorphic Image with Large Deformation. ACTA AUTOMATICA SINICA, 2015, 41(8): 1461-1470. doi: 10.16383/j.aas.2015.c140816

大形变微分同胚图像配准快速算法

doi: 10.16383/j.aas.2015.c140816
基金项目: 

国家自然科学基金(61105085, 61373127, 61170143), 辽宁省教育厅基金(L2014427)资助

详细信息
    作者简介:

    刘彩凤 辽宁师范大学计算机与信息学院硕士研究生.主要研究方向为信息处理与模式识别.E-mail:liucaifeng12345@163.com

A Fast Image Registration Algorithm for Diffeomorphic Image with Large Deformation

Funds: 

Supported by National Natural Science Foundation of China (61105085, 61373127, 61170143) and Science Foundation of Education Ministry of Liaoning Province (L2014427)

  • 摘要: 本文提出一种研究大形变图像配准算法. 大形变使得图像信息和拓扑结构有较大的改变, 目前该方面的研究仍然是一个难点. 基于严密数学理论的微分同胚Demons算法是图像配准的著名算法, 为解决大形变配准问题提供了重要基础. 基于对微分同胚Demons算法的研究结合流形学习的思想提出一种大形变图像配准的新算法(MRL算法). 新算法通过挖掘图像的局部和全局流形信息改进微分同胚Demons 速度场的更新, 更好地保持图像的拓扑结构. 对比实验结果表明, 本文所提出的算法能够快速高精度地实现大形变图像的配准.
  • [1] Mansi T, Pennec X, Sermesant M, Delingette H, Ayache N. iLogDemons: a Demons-based registration algorithm for tracking incompressible elastic biological tissue. International Journal of Computer Vision, 2011, 92(1): 92-111
    [2] Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Transactions on Medical Imaging, 2013, 32(7): 1153-1190
    [3] Broit C. Optimal Registration of Deformed Images [Ph.D. dissertation], University of Pennsylvania, 1981.
    [4] Bajscy R, Kovačič S. Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing, 1989, 46(1): 1-21
    [5] Pennec X, Stefanescu R, Arsigny V, Fillard P, Ayache N. Riemannian elasticity: a statistical regularization framework for non-linear registration. In: Proceedings of the 8th International Conference Medical Image Computing and Computer Assisted Intervention-MICCAI 2005. Palm Springs, CA, USA: Springer, 2005. 943-950
    [6] Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage, 2007, 38(1): 95-113
    [7] Christensen G E, Rabbitt R D, Miller M I. Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 1996, 5(10): 1435-1447
    [8] Chiang M C, Leow A D, Klunder A D, Dutton R A, Barysheva M, Rose S E, McMahon K L, de Zubicaray G I, Toga A W, Thompson P M. Fluid registration of diffusion tensor images using information theory. IEEE Transactions on Medical Imaging, 2008, 27(4): 442-456
    [9] Benchemin S S, Barron J L. The computation of optical flow. ACM Computing Surveys, 1995, 27(3): 433-466
    [10] Bruhn A, Weickert J, Schnörr C. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. International Journal of Computer Vision, 2005, 61(3): 211-231
    [11] Thirion J P. Image matching as a diffusion process: an analogy with maxwell's Demons. Medical Image Analysis, 1998, 2(3): 243-260
    [12] Wang H, Dong L, O'Daniel J, Mohan R, Garden A S, Ang K K, Kuban D A, Bonnen M, Chang J Y, Cheung R. Validation of an accelerated ‘Demons’ algorithm for deformable image registration in radiation therapy. Physics in Medicine and Biology, 2005, 50(12): 2887-2905
    [13] Rogelj R, Kovacic S. Symmetric image registration. Medical Image Analysis, 2006, 10(3): 484-493
    [14] Vercauteren T, Pennec X, Perchant A, Ayache N. Diffeomorphic Demons: efficient non-parametric image registration. Neurolmage, 2009, 45(1S): S61-S72
    [15] Fischer B, Modersitzki J. Curvature based image registration. Journal of Mathematical Imaging and Vision, 2003, 18(1): 81-85
    [16] Fischer B, Modersitzki J. A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra and its Applications, 2004, 380: 107-124
    [17] Henn S. A full curvature based algorithm for image registration. Journal of Mathematical Imaging and Vision, 2006, 24(2): 195-208
    [18] Beuthien B, Kamen A, Fischer B. Recursive green's function registration. In: Proceedings of the 13th International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2010. Beijing, China: Springer, 2010. 546-553
    [19] Vercauteren T, Pennec X, Perchant A, Ayache N. Non-parametric diffeomorphic image registration with the Demons algorithm. In: Proceedings of the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2007). Brisbane, Australia: Springer, 2007. 319-326
    [20] Vercauteren T, Pennec X, Perchant A, Ayache N. Symmetric log-domain diffeomorphic Registration: a Demons-based approach. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008). New York, USA: Springer, 2008. 754-761
    [21] Cahill N D, Noble J A, Hawkes D J. Demons algorithms for fluid and curvature registration. In: Proceedings of the 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Boston, MA: IEEE, 2009. 730-733
    [22] Trouvé A. Diffeomorphisms groups and pattern matching in image analysis. International Journal of Computer Vision, 1998, 28(3): 213-221
    [23] Risser L, Vialard F, Wolz R, Murgasova M, Holm D, Rueckert D. Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping. IEEE Transactions on Medical Imaging, 2011, 30(10): 1746-1759
    [24] Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Groupwise spectral log-Demons framework for atlas construction. In: Proceedings of the 2013 Lecture Notes in Computer Science of Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. Nice, France: Springer, 2013. 11-19
    [25] Lorenzi M, Ayache N, Frisoni G B, Pennec X. LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage, 2013, 81: 470-483
    [26] Grenander U, Miller M. Pattern Theory: From Representation to Inference. Oxford: Oxford University Press, 2006.
    [27] Beg M, Miller M, Trouvé A, Younes L. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision , 2005, 61(2): 139-157
    [28] Dupuis P, Grenander U, Miller M I. Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, 1998, 56(3): 587-600
    [29] Lombaert H, Grady L, Pennec X, Ayache N, Cheriet F. Spectral log-Demons: diffeomorphic image registration with very large deformations. International Journal of Computer Vision, 2014, 107(3): 254-271
    [30] Arsigny V, Commowick O, Pennec X, Ayache N. A log-euclidean framework for statistics on diffeomorphisms. In: Proceedings of the 9th International Conference on Medical Image Computing and Computer-assisted Intervention-MICCAI 2006. Copenhagen, Denmark: Springer, 2006. 924-931
    [31] Wu Y, Ma W P, Gong M G, Su L Z, Jiao L C. A novel point-matching algorithm based on fast sample consensus for image registration. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 43-47
    [32] Jia Y, Zhang Y J, Rabczuk T. A novel dynamic multilevel technique for image registration. Computers & Mathematics with Applications, 2015, 69(9): 909-925
    [33] Saxenal D, Kumar Singh R. A survey of recent and classical image registration methods. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7(4): 167-176
    [34] Liu X Z, Yuan Z M, Zhu J M, Xu D R. Medical image registration by combining global and local information: a chain-type diffeomorphic Demons algorithm. Physics in Medicine and Biology, 2013, 58(23): 8359-8378
    [35] Marsland S, Twining C J, Taylor C J. Groupwise non-rigid registration using polyharmonic clamped-plate splines. In: Proceedings of the 6th Inter-national Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003, Montreal, Canada: 2003. 771-779
    [36] Zhou L, Zhou L H, Zhang S X, Zhen X, Yu H, Zhang G Q, Wang R H. Validation of an improved diffeomorphic Demons algorithm for deformable image registration in image-guided radiation therapy. Bio-Medical Materials and Engineering, 2014, 24(1): 373-382
    [37] Linger M E, Goshtasby A A. Aerial image registration for tracking. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2137-2145
    [38] Zhang Gui-Mei, Cao Hong-Yang, Chu Jun, Zeng Jie-Xian. Non-rigid image registration based on low-rank Nyström approximation and spectral feature. Acta Automatica Sinica, 2015, 41(2): 429-438(张桂梅, 曹红洋, 储珺, 曾接贤. 基于 Nyström 低阶近似和谱特征的图像非刚性配准. 自动化学报, 2015, 41(2): 429-438)
    [39] Zhao Hai-Feng, Lu Ming, Bu Ling-Bin, Sun Deng-Di, Luo Bin. Medical registration based on feature points and Rényi mutual information. Chinese Journal of Computers. 2015, 38(6): 1212-1221(赵海峰, 陆明, 卜令斌, 孙登第, 罗斌. 基于特征点Reényi互信息的医学图像配准. 计算机学报. 2015, 38(6): 1212-1221)
    [40] Saul L K, Rowels S T. Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 2003, 4(4): 119-155
    [41] Qiao H, Zhang P, Wang D, Zhang B. An explicit nonlinear mapping for manifold learning. IEEE Transactions on Cybernetics, 2012, 43(1): 51-63
    [42] Yan De-Qin, Liu Sheng-Lan, Li Yan-Yan. An embedding dimension reduction algorithm based on sparse analysis. Acta Automatica Sinica, 2011, 37(11): 1306-1312(闫德勤, 刘胜蓝, 李燕燕. 一种基于稀疏分析的降维方法. 自动化学报, 2011, 37(11): 1306-1312)
    [43] Zikic D, Baust M, Kamen A, Navab N. A general preconditioning scheme for difference measures in deformable registration. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 49-56
    [44] Cachier P, Bardinet E, Dormont D, Pennec X, Ayache N. Iconic feature based nonrigid registration: the PASHA algorithm. Computer Vision and Image Understanding, 2003, 89(2-3): 272-298
    [45] Bhatia K K, Rao A, Price A, Wolz R, Hajnal J, Rueckert D. Hierarchical manifold learning for regional image analysis. IEEE Transactions on Medical Imaging, 2014, 33(2): 444-461
    [46] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
    [47] Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323
    [48] Hamm J, Ye D H, Verma R, Davatzikos. GRAM: a framework for geodesic registration on anatomical manifolds. Medical Image Analysis, 2010, 14(5): 633-642
  • 加载中
计量
  • 文章访问数:  2618
  • HTML全文浏览量:  171
  • PDF下载量:  2820
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-26
  • 修回日期:  2015-04-23
  • 刊出日期:  2015-08-20

目录

    /

    返回文章
    返回