[1]
|
Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2169-2178
|
[2]
|
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893
|
[3]
|
Lowe D G. Distinctive image features from scale-invariant keypoints. Journal of Computer Vision, 2004, 60(2): 91- 110
|
[4]
|
Bay H, Tuytelaars T, Gool L V. Surf: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision. Berlin, Germany: Springer, 2006. 404- 417
|
[5]
|
Yan Xue-Jun, Zhao Chun-Xia, Yuan Xia. 2DPCA-SIFT: an efficient local feature descriptor. Acta Automatica Sinica, 2014, 40(4): 675-682(颜雪军, 赵春霞, 袁夏. 2DPCA-SIFT: 一种有效的局部特征描述方法. 自动化学报, 2014, 40(4): 675-682)
|
[6]
|
Yan Zi-Geng, Jiang Jian-Guo, Guo Dan. Image matching based on surf feature and delaunay triangular meshes. Acta Automatica Sinica, 2014, 40(6): 1216-1222(闫自庚, 蒋建国, 郭丹. 基于SURF 特征和Delaunay 三角网格的图像匹配. 自动化学报, 2014, 40(6): 1216-1222
|
[7]
|
Ramasubramanian V, Paliwal K K. Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding. IEEE Transactions on Signal Processing, 1992, 40(3): 518-531
|
[8]
|
Liu T, Moore A W, Gray A, Yang K. An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of the 2004 Conference Neural Information Processing Systems. British Columbia, Canada: MIT Press, 2004. 825-832
|
[9]
|
Wagner D, Reitmayr G, Mulloni A, Drummond T, Schmalstieg D. Real-time detection and tracking for augmented reality on mobile phones. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(3): 355-368
|
[10]
|
Nister D, Stewenius H. Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2161-2168
|
[11]
|
Baatz G, Koser K, Chen D, Grzeszczuk R, Pollefeys M. Handling urban location recognition as a 2d homothetic problem. In: Proceedings of the 11th European Conference on Computer Vision. Crete, Greece: Springer, 2010. 738-742
|
[12]
|
Su Y C, Huang K Y, Chen T W, Tsai Y M, Chien S Y, Chen L G. A 52 mW full HD 160-degree object viewpoint recognition SoC with visual vocabulary processor for wearable vision applications. IEEE Journal of Solid-State Circuits, 2012, 47(4): 797-809
|
[13]
|
Ober S, Winter M, Clemens A, Bischof H. Dual-layer visual vocabulary tree hypotheses for object recognition. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, TX: IEEE, 2007. 345-348
|
[14]
|
Csurka G, Dance C R, Fan L X, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, Springer, 2004. 59-74
|
[15]
|
Zhang Xue-Feng, Wang Peng-Hui, Feng Bo, Du Lan, Liu Hong-Wei. A new method to improve radar HRRP recognition and outlier rejection performances based on classifier combination. Acta Automatica Sinica, 2014, 40(2): 348- 356(张学峰, 王鹏辉, 冯博, 杜兰, 刘宏伟. 基于多分类器融合的雷达高分辨距离像目标识别与拒判新方法. 自动化学报, 2014, 40(2): 348-356)
|
[16]
|
Shi C Z, Wang C H, Xiao B H, Zhang Y, Gao S. Multi-scale graph-matching based kernel for character recognition from natural scenes. Acta Automatica Sinica, 2014, 40(4): 752- 756
|
[17]
|
Muralidharan R, Chandrasekar C. 3D object recognition using multiclass support vector machine-k-nearest neighbor supported by local and global feature. Journal of Computer Science, 2012, 8(8): 1380-1388
|
[18]
|
Philbin J, Chum O, Isard M, Sivic J, Zisserman A. Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007. 1-8
|
[19]
|
Moosmann F, Nowak E, Jurie F. Randomized clustering forests for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9): 1632- 1646
|
[20]
|
Lepetit V, Fua P. Keypoint recognition using randomized trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1465-1479
|
[21]
|
Ozuysal M, Calonder M, Lepetit V, Fua P. Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 448- 461
|
[22]
|
Li Juan, Wang Yu-Ping. A fast neighbor prototype selection algorithm based on local mean and class global information. Acta Automatica Sinica, 2014, 40(6): 1116-1125 (李娟, 王宇平. 考虑局部均值和类全局信息的快速近邻原型选择算法. 自动化学报, 2014, 40(6): 1116-1125)
|
[23]
|
Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in video. In: Proceedings of the 2003 IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 1470-1477
|
[24]
|
Kurz D, Benhimane S. Inertial sensor-aligned visual feature descriptors. In: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 161-166
|
[25]
|
Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999
|
[26]
|
Maji S, Berg A C, Malik J. Classification using intersection kernel support vector machines is efficient. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE, 2008. 1-8
|
[27]
|
Wu J X, Tan W C, James M R. Efficient and effective visual codebook generation using additive kernels. Journal of Machine Learning Research, 2011, 12(11): 3097-3118
|
[28]
|
Maji S, Berg A C, Malik J. Efficient classification for additive kernel SVMs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 66-77
|
[29]
|
Chum O, Matas J. Matching with prosac-progressive sample consensus. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 20-25
|
[30]
|
Chum O, Werner T, Matas J. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In: Proceedings of the 2004 International Conference on Pattern Recognition. Washington, USA: IEEE, 2004. 112-115
|