2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种融合多传感器信息的移动图像识别方法

桂振文 吴侹 彭欣

桂振文, 吴侹, 彭欣. 一种融合多传感器信息的移动图像识别方法. 自动化学报, 2015, 41(8): 1394-1404. doi: 10.16383/j.aas.2015.c140177
引用本文: 桂振文, 吴侹, 彭欣. 一种融合多传感器信息的移动图像识别方法. 自动化学报, 2015, 41(8): 1394-1404. doi: 10.16383/j.aas.2015.c140177
GUI Zhen-Wen, WU Ting, PENG Xin. A Novel Recognition Approach for Mobile Image Fusing Inertial Sensors. ACTA AUTOMATICA SINICA, 2015, 41(8): 1394-1404. doi: 10.16383/j.aas.2015.c140177
Citation: GUI Zhen-Wen, WU Ting, PENG Xin. A Novel Recognition Approach for Mobile Image Fusing Inertial Sensors. ACTA AUTOMATICA SINICA, 2015, 41(8): 1394-1404. doi: 10.16383/j.aas.2015.c140177

一种融合多传感器信息的移动图像识别方法

doi: 10.16383/j.aas.2015.c140177
基金项目: 

国家高技术研究发展计划(863计划) (2013AA013802),国家自然科学基金(61370134), 国家重大科技专项(2012ZX03002004), 广东省协同创新与平台环境建设专项(2014B090901024)资助

详细信息
    作者简介:

    吴侹 学士,中国电子科技集团公司第七研究所高级工程师.主要研究方向为图像识别和卫星通信.E-mail:13631490916@139.com

A Novel Recognition Approach for Mobile Image Fusing Inertial Sensors

Funds: 

Supported by National High Technology Research and Development Program of China (863 Program) (2013AA013802), National Natural Science Foundation of China (61370134), National Science and Technology Major Project (2012ZX03002004), and Collaborative Innovation and Platform Environment Construction Major Project of Guangdong Province (2014B090901024)

  • 摘要: 多传感器数据融合作为一种特殊的数据处理手段在图像识别领域得到了较大的重视和发展, 本文提出了一种融合多传感器信息的移动图像识别方法. 首先通过在智能手机端提取带传感器信息的图像局部特征,增强局部特征的辨别能力; 其次改进了随机聚类森林的建立算法,减少了样本图像训练时间;最后使用快 速几何一致性校验对匹配结果进行检查, 保证算法的识别精度.实验结果表明,本文提出的方法能够快速 有效地识别移动图像,并具有较好的鲁棒性,同时与传统的Vocabulary tree 方法进行比较,本文方法的识别速度和精度较优,训练代价较低.
  • [1] Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2169-2178
    [2] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893
    [3] Lowe D G. Distinctive image features from scale-invariant keypoints. Journal of Computer Vision, 2004, 60(2): 91- 110
    [4] Bay H, Tuytelaars T, Gool L V. Surf: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision. Berlin, Germany: Springer, 2006. 404- 417
    [5] Yan Xue-Jun, Zhao Chun-Xia, Yuan Xia. 2DPCA-SIFT: an efficient local feature descriptor. Acta Automatica Sinica, 2014, 40(4): 675-682(颜雪军, 赵春霞, 袁夏. 2DPCA-SIFT: 一种有效的局部特征描述方法. 自动化学报, 2014, 40(4): 675-682)
    [6] Yan Zi-Geng, Jiang Jian-Guo, Guo Dan. Image matching based on surf feature and delaunay triangular meshes. Acta Automatica Sinica, 2014, 40(6): 1216-1222(闫自庚, 蒋建国, 郭丹. 基于SURF 特征和Delaunay 三角网格的图像匹配. 自动化学报, 2014, 40(6): 1216-1222
    [7] Ramasubramanian V, Paliwal K K. Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding. IEEE Transactions on Signal Processing, 1992, 40(3): 518-531
    [8] Liu T, Moore A W, Gray A, Yang K. An investigation of practical approximate nearest neighbor algorithms. In: Proceedings of the 2004 Conference Neural Information Processing Systems. British Columbia, Canada: MIT Press, 2004. 825-832
    [9] Wagner D, Reitmayr G, Mulloni A, Drummond T, Schmalstieg D. Real-time detection and tracking for augmented reality on mobile phones. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(3): 355-368
    [10] Nister D, Stewenius H. Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2161-2168
    [11] Baatz G, Koser K, Chen D, Grzeszczuk R, Pollefeys M. Handling urban location recognition as a 2d homothetic problem. In: Proceedings of the 11th European Conference on Computer Vision. Crete, Greece: Springer, 2010. 738-742
    [12] Su Y C, Huang K Y, Chen T W, Tsai Y M, Chien S Y, Chen L G. A 52 mW full HD 160-degree object viewpoint recognition SoC with visual vocabulary processor for wearable vision applications. IEEE Journal of Solid-State Circuits, 2012, 47(4): 797-809
    [13] Ober S, Winter M, Clemens A, Bischof H. Dual-layer visual vocabulary tree hypotheses for object recognition. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, TX: IEEE, 2007. 345-348
    [14] Csurka G, Dance C R, Fan L X, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, Springer, 2004. 59-74
    [15] Zhang Xue-Feng, Wang Peng-Hui, Feng Bo, Du Lan, Liu Hong-Wei. A new method to improve radar HRRP recognition and outlier rejection performances based on classifier combination. Acta Automatica Sinica, 2014, 40(2): 348- 356(张学峰, 王鹏辉, 冯博, 杜兰, 刘宏伟. 基于多分类器融合的雷达高分辨距离像目标识别与拒判新方法. 自动化学报, 2014, 40(2): 348-356)
    [16] Shi C Z, Wang C H, Xiao B H, Zhang Y, Gao S. Multi-scale graph-matching based kernel for character recognition from natural scenes. Acta Automatica Sinica, 2014, 40(4): 752- 756
    [17] Muralidharan R, Chandrasekar C. 3D object recognition using multiclass support vector machine-k-nearest neighbor supported by local and global feature. Journal of Computer Science, 2012, 8(8): 1380-1388
    [18] Philbin J, Chum O, Isard M, Sivic J, Zisserman A. Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007. 1-8
    [19] Moosmann F, Nowak E, Jurie F. Randomized clustering forests for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9): 1632- 1646
    [20] Lepetit V, Fua P. Keypoint recognition using randomized trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1465-1479
    [21] Ozuysal M, Calonder M, Lepetit V, Fua P. Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 448- 461
    [22] Li Juan, Wang Yu-Ping. A fast neighbor prototype selection algorithm based on local mean and class global information. Acta Automatica Sinica, 2014, 40(6): 1116-1125 (李娟, 王宇平. 考虑局部均值和类全局信息的快速近邻原型选择算法. 自动化学报, 2014, 40(6): 1116-1125)
    [23] Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in video. In: Proceedings of the 2003 IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 1470-1477
    [24] Kurz D, Benhimane S. Inertial sensor-aligned visual feature descriptors. In: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 161-166
    [25] Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999
    [26] Maji S, Berg A C, Malik J. Classification using intersection kernel support vector machines is efficient. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE, 2008. 1-8
    [27] Wu J X, Tan W C, James M R. Efficient and effective visual codebook generation using additive kernels. Journal of Machine Learning Research, 2011, 12(11): 3097-3118
    [28] Maji S, Berg A C, Malik J. Efficient classification for additive kernel SVMs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 66-77
    [29] Chum O, Matas J. Matching with prosac-progressive sample consensus. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 20-25
    [30] Chum O, Werner T, Matas J. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In: Proceedings of the 2004 International Conference on Pattern Recognition. Washington, USA: IEEE, 2004. 112-115
  • 加载中
计量
  • 文章访问数:  1969
  • HTML全文浏览量:  108
  • PDF下载量:  2261
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-24
  • 修回日期:  2014-08-18
  • 刊出日期:  2015-08-20

目录

    /

    返回文章
    返回