2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无参考图像质量评价综述

王志明

王志明. 无参考图像质量评价综述. 自动化学报, 2015, 41(6): 1062-1079. doi: 10.16383/j.aas.2015.c140404
引用本文: 王志明. 无参考图像质量评价综述. 自动化学报, 2015, 41(6): 1062-1079. doi: 10.16383/j.aas.2015.c140404
WANG Zhi-Ming. Review of No-reference Image Quality Assessment. ACTA AUTOMATICA SINICA, 2015, 41(6): 1062-1079. doi: 10.16383/j.aas.2015.c140404
Citation: WANG Zhi-Ming. Review of No-reference Image Quality Assessment. ACTA AUTOMATICA SINICA, 2015, 41(6): 1062-1079. doi: 10.16383/j.aas.2015.c140404

无参考图像质量评价综述

doi: 10.16383/j.aas.2015.c140404
详细信息
    作者简介:

    王志明 北京科技大学计算机与通信工程学院副教授. 主要研究方向为图像复原,图像增强和图像质量评价.E-mail: wangzhiming@tsinghua.org.cn

Review of No-reference Image Quality Assessment

  • 摘要: 图像质量对人类视觉信息的获取影响很大, 如何在没有参考图像的情况下准确地评价失真图像的质量是一个关键但又非常困难的问题. 本文回顾了近20年来无参考图像质量评价发展的主要技术. 首先,介绍了这一领域常用的衡量评价算法性能的技术指标,以及几个网上共享的典型图像质量评价数据库; 然后,对各种无参考图像质量评价算法进行详细的分类介绍和特点评析; 最后,基于典型数据库对近几年的一些非特定失真图像质量评价方法进行了性能测试和比较. 目的是为这一领域的研究人员提供一个较为全面的、有价值的文献参考.
  • [1] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612
    [2] [2] Sheikh H R, Bovik A C. Image information and visual quality. IEEE Transactions on Image Processing, 2006, 15(2): 430-444
    [3] [3] Chandler D M, Hemami S S. VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298
    [4] [4] Larson E C, Chandler D M. Most apparent distortion: full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 2010, 19(1): 011006-1- 011006-21
    [5] [5] Lissner I, Preiss J, Urban P, Lichtenauer M S, Zolliker P. Image-difference prediction: from grayscale to color. IEEE Transactions on Image Processing, 2013, 22(2): 435-446
    [6] [6] Sheikh H R, Sabir M F, Bovik A C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 2006, 15(11): 3440-3451
    [7] [7] Lin W S, Kuo C C J. Perceptual visual quality metrics: a survey. Journal of Visual Communication and Image Representation, 2011, 22(4): 297-312
    [8] [8] Wang Z, Simoncelli E P. Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Proceedings of the 2005 SPIE 5666, Human Vision and Electronic Imaging X. San Jose, USA: SPIE, 2005. 149-159
    [9] [9] Gao X B, Lu W, Tao D C, Li X L. Image quality assessment based on multiscale geometric analysis. IEEE Transactions on Image Processing, 2009, 18(7): 1409-1423
    [10] Campisi P, Carli M, Giunta G, Neri A. Blind quality assessment system for multimedia communications using tracing watermarking. IEEE Transactions on Signal Processing, 2003, 51(4): 996-1002
    [11] Li Q, Wang Z. Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2): 202-211
    [12] Chandler D M. Seven challenges in image quality assessment: past, present, and future research. ISRN Signal Processing, 2013, 2013: 1-53
    [13] Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F. TID2008 a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009, 10: 30-45
    [14] Marziliano P, Dufaux F, Winkler S, Ebrahimi T. A no-reference perceptual blur metric. In: Proceedings of the 2002 International Conference on Image Processing. New York, USA: IEEE, 2002. III-57-III-60
    [15] Marziliano P, Dufaux F, Winkler S, Ebrahimi T. Perceptual blur and ringing metrics: application to JPEG2000. Signal Processing: Image Communication, 2004, 19(2): 163-172
    [16] Ong E P, Lin W S, Lu Z K, Yang X K, Yao S S, Pan F, Jiang L J, Moschetti F. A no-reference quality metric for measuring image blur. In: Proceedings of the 7th International Symposium on Signal Processing and Its Applications. New York, USA: IEEE, 2003. 469-472
    [17] Ong E P, Lin W S, Lu Z K, Yao S S, Yang X K, Jiang L J. No-reference JPEG-2000 image quality metric. In: Proceedings of the 2003 International Conference on Multimedia and Expo. New York, USA: IEEE, 2003. I-545-I-548
    [18] Dijk J, van Ginkel M, van Asselt R J, van Vliet L J, Verbeek P W. A new sharpness measure based on Gaussian lines and edges. In: Proceedings of the 8th Annual Conference on the Advanced School for Computing and Imaging. Berlin, Germany: Springer, 2003. 149-156
    [19] Chung Y C, Wang J M, Bailey R R, Chen S W, Chang S L. A non-parametric blur measure based on edge analysis for image processing applications. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. New York, USA: IEEE, 2004. 356-360
    [20] Yan Q, Xu Y, Yang X K. No-reference image blur assessment based on gradient profile sharpness. In: Proceedings of the 2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. New York, USA: IEEE, 2013. 1-4
    [21] Wu S Q, Lin W S, Jian L J, Xiong W, Chen L H. An objective out-of-focus blur measurement. In: Proceedings of the 5th International Conference on Information, Communications and Signal Processing. Bangkok: IEEE, 2005. 334-338
    [22] Liang L H, Chen J H, Ma S W, Zhao D H, Gao W. A no-reference perceptual blur metric using histogram of gradient profile sharpness. In: Proceedings of the 16th IEEE International Conference on Image Processing. Cairo: IEEE, 2009. 4369-4372
    [23] Choi M G, Jung J H, Jeon J W. No-reference image quality assessment using blur and noise. World Academy of Science, Engineering and Technology, 2009, 50: 163-167
    [24] Wang X, Tian B F, Liang C, Shi D C. Blind image quality assessment for measuring image blur. In: Proceedings of the 2008 Congress on Image and Signal Processing. Sanya, Hainan, China: IEEE, 2008. 467-470
    [25] Wang Y F, Du H Q, Xu J T, Liu Y. A no-reference perceptual blur metric based on complex edge analysis. In: Proceedings of the 3rd IEEE International Conference on Network Infrastructure and Digital Content. Beijing, China: IEEE, 2012. 487-491
    [26] Soleimani S, Rooms F, Philips W. Efficient blur estimation using multi-scale quadrature filters. Signal Processing, 2013, 93(7): 1988-2002
    [27] Ferzli R, Karam L J. Human visual system based no-reference objective image sharpness metric. In: Proceedings of the 2006 IEEE International Conference on Image Processing. Atlanta, GA: IEEE, 2006. 2949-2952
    [28] Ferzli R, Karam L J. A no-reference objective image sharpness metric based on just-noticeable blur and probability summation. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, TX: IEEE, 2007. III-445-III-448
    [29] Ferzli R, Karam L J. A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Transactions on Image Processing, 2009, 18(4): 717-728
    [30] Sadaka N G, Karam L J, Ferzli R, Abousleman G P. A no-reference perceptual image sharpness metric based on saliency-weighted foveal pooling. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, CA: IEEE, 2008. 369-372
    [31] Narvekar N D, Karam L J. A no-reference perceptual image sharpness metric based on a cumulative probability of blur detection. In: Proceedings of the 2009 International Workshop on Quality of Multimedia Experience. San Diego, CA: IEEE, 2009. 87-91
    [32] Narvekar N D, Karam L J. A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Transactions on Image Processing, 2011, 20(9): 2678-2683
    [33] Zhong S H, Liu Y, Liu Y, Chung F L. A semantic no-reference image sharpness metric based on top-down and bottom-up saliency map modeling. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 1553-1556
    [34] Feichtenhofer C, Fassold H, Schallauer P. A perceptual image sharpness metric based on local edge gradient analysis. IEEE Signal Processing Letters, 2013, 20(4): 379-382
    [35] Marichal X, Ma W Y, Zhang H J. Blur determination in the compressed domain using DCT information. In: Proceedings of the 1999 International Conference on Image Processing. Kobe: IEEE, 1999, 2: 386-390
    [36] Caviedes J, Gurbuz S. No-reference sharpness metric based on local edge kurtosis. In: Proceedings of the 2002 International Conference on Image Processing. Rochester, NY, USA: IEEE, 2002, 3: III-53-III-56
    [37] Shaked D, Tastl I. Sharpness measure: towards automatic image enhancement. In: Proceedings of the 2005 IEEE International Conference on Image Processing. Genova: IEEE, 2005, 1: 937-940
    [38] Kristan M, Per J, Pere M, Kovačič S. A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform. Pattern Recognition Letters, 2006, 27(13): 1431-1439
    [39] Ferzli R, Karam L J. No-reference objective wavelet based noise immune image sharpness metric. In: Proceedings of the 2005 IEEE International Conference on Image Processing. New York, USA: IEEE, 2005, 1: I-405-I-408
    [40] Ciancio A, da Costa A L N, da Silva E A B, Said A, Samadani R, Obrador P. Objective no-reference image blur metric based on local phase coherence. Electronics Letters, 2009, 45(23): 1162-1163
    [41] Hassen R, Wang Z, Salama M. No-reference image sharpness assessment based on local phase coherence measurement. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing. Dallas, TX: IEEE, 2010. 2434-2437
    [42] Hassen R, Wang Z, Salama M M A. Image sharpness assessment based on local phase coherence. IEEE Transactions on Image Processing, 2013, 22(7): 2798-2810
    [43] Tong H H, Li M J, Zhang H J, Zhang C S. Blur detection for digital images using wavelet transform. In: Proceedings of the 2004 IEEE International Conference on Multimedia and Expo. Taipei, China: IEEE, 2004. 17-20
    [44] Kerouh F. A no reference quality metric for measuring image blur in wavelet domain. International Journal of Digital Information and Wireless Communications, 2012, 4(1): 767- 776
    [45] Vu P V, Chandler D M. A fast wavelet-based algorithm for global and local image sharpness estimation. IEEE Signal Processing Letters, 2012, 19(7): 423-426
    [46] Hsin C, Jang J W, Shin S J, Chen S H. A no-reference objective image sharpness metric based on a filter bank of Gaussian derivative wavelets. In: Proceedings of the 2011 International Conference on Multimedia Technology. Hangzhou, China: IEEE, 2011. 3362-3365
    [47] Serir A. No-reference blurred image quality assessment. In: Proceedings of the 3rd European Workshop on Visual Information Processing. Paris, France: IEEE, 2011. 168-173
    [48] Serir A, Beghdadi A, Kerouh F. No-reference blur image quality measure based on multiplicative multiresolution decomposition. Journal of Visual Communication and Image Representation, 2013, 24(7): 911-925
    [49] Zhang T J, Zhang H, Yuan D. A no-reference quality metric for blur image. In: Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. Washington DC, USA: IEEE, 2013. 1813-1816
    [50] Zhu X, Milanfar P. A no-reference sharpness metric sensitive to blur and noise. In: Proceedings of the 2009 International Workshop on Quality of Multimedia Experience. San Diego, CA: IEEE, 2009. 64-69
    [51] Zhu X, Milanfar P. A no-reference image content metric and its application to denoising. In: Proceedings of the 17th International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 1145-1148
    [52] Zhu X, Milanfar P. Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Transactions on Image Processing, 2010, 19(12): 3116-3132
    [53] Chen M J, Bovik A C. No-reference image blur assessment using multiscale gradient. In: Proceedings of the 2009 International Workshop on Quality of Multimedia Experience. San Diego, CA: IEEE, 2009. 70-74
    [54] Chen M J, Bovik A C. No-reference image blur assessment using multiscale gradient. EURASIP Journal on Image and Video Processing, 2011, 3: 1-11
    [55] Vu C T, Phan T D, Chandler D M. S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Transactions on Image Processing, 2012, 21(3): 934- 945
    [56] Ciancio A, da Costa A L N T, da Silva E A B, Said A, Samadani R, Obrador P. No-reference blur assessment of digital pictures based on multifeature classifiers. IEEE Transactions on Image Processing, 2011, 20(1): 64-75
    [57] Crete F, Dolmiere T, Ladret P, Nicolas M. The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: Proceedings of the 2007 SPIE Human Vision and Electronic Imaging XII. San Jose, USA: SPIE, 2007. 1-11
    [58] Zhang Rong, Yang Jian-Chao, Zhang Qian, Liu Zheng-Kai. Motion blur extent evaluation of SAR images. Acta Electronica Sinica, 2007, 35(10): 2019-2022(张荣, 杨建朝, 张倩, 刘政凯. SAR图像运动模糊参数估计. 电子学报, 2007, 35(10): 2019-2022)
    [59] Tsomko E, Kim H J. Efficient method of detecting globally blurry or sharp images. In: Proceedings of the 9th International Workshop on Image Analysis for Multimedia Interactive Services. Klagenfurt, Austria: IEEE, 2008. 171-174
    [60] Liu D B, Chen Z B, Ma H D, Xu F, Gu X D. No reference block based blur detection. In: Proceedings of the 2009 International Workshop on Quality of Multimedia Experience. San Diego, CA: IEEE, 2009. 75-80
    [61] Wee C Y, Paramesran R. Image sharpness measure using eigenvalues. In: Proceedings of the 9th International Conference on Signal Processing. Beijing, China: IEEE, 2008. 840-843
    [62] Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425-455
    [63] Zhang Qi, Liang De-Qun, Fan Xin. Estimating image noise based on region segmentation in the wavelet domain. Computer Engineering, 2004, 30(8): 37-39(张旗, 梁德群, 樊鑫. 基于小波域的图像噪声估计新方法. 计算机工程, 2004, 30(8): 37-39)
    [64] Li Tian-Yi, Wang Ming-Hui, Wu Ya-Juan, Chang Hua-Wen. Wavelet-based approach for estimating the variance of noise in images. Journal of Beijing University of Technology, 2012, 38(9): 1402-1407(李天翼, 王明辉, 吴亚娟, 常化文. 图像噪声方差的小波域估计算法. 北京工业大学学报, 2012, 38(9): 1402-1407)
    [65] Meer P, Jolion J M, Rosenfeld A. A fast parallel algorithm for blind estimation of noise variance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(2): 216-223
    [66] Salmeri M, Mencattini A, Ricci E, Salsano A. Noise estimation in digital images using fuzzy processing. In: Proceedings of the 2001 International Conference on Image Processing. Thessaloniki: IEEE, 2001, 1: 517-520
    [67] Tian J, Chen L. Image noise estimation using a variation-adaptive evolutionary approach. IEEE Signal Processing Letters, 2012, 19(7): 395-398
    [68] Sari S, Roslan H, Shimamura T. Noise estimation by utilizing mean deviation of smooth region in noisy image. In: Proceedings of the 4th International Conference on Computational Intelligence, Modelling and Simulation. Kuantan, Malaysia: IEEE, 2012. 232-236
    [69] Huang X T, Chen L, Tian J, Zhang X L, Fu X W. Blind noisy image quality assessment using block homogeneity. Computers and Electrical Engineering, 2014, 40(3): 796- 807
    [70] Liu X H, Tanaka M, Okutomi M. Practical signal-dependent noise parameter estimation from a single noisy image. IEEE Transactions on Image Processing, 2014, 23(10): 4361- 4371
    [71] Immerkaer J. Fast noise variance estimation. Computer Vision and Image Understanding, 1996, 64(2): 300-302
    [72] Shin D H, Park R H, Yang S, Jung J H. Block-based noise estimation using adaptive gaussian filtering. IEEE Transactions on Consumer Electronics, 2005, 51(1): 218-226
    [73] Constantin J, Haddad S, Constantin I, Bigand A, Hamad D. No-reference quality assessment in global illumination algorithms based on SVM. In: Proceedings of the 25th International Conference on Microelectronics. Beirut, Lebanon: IEEE, 2013. 1-4
    [74] Rank K, Lendl M, Unbehauen R. Estimation of image noise variance. IEE Proceedings Vision, Image, and Signal Processing, 1999, 146(2): 80-84
    [75] Tai S C, Yang S M. A fast method for image noise estimation using Laplacian operator and adaptive edge detection. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing. St Julians: IEEE, 2008. 1077-1081
    [76] Laligant O, Truchetet F, Fauvet E. Noise estimation from digital step-model signal. IEEE Transactions on Image Processing, 2013, 22(12): 5158-5167
    [77] Konstantinides K, Natarajan B, Yovanof G S. Noise estimation and filtering using block-based singular value decomposition. IEEE Transactions on Image Processing, 1997, 6(3): 479-483
    [78] Liu Wei. Gaussian noise level estimation in SVD domain for images. Journal of Image and Graphics, 2012, 17(8): 923- 933 (柳薇. SVD域的图像高斯噪声强度估计. 中国图象图形学报, 2012, 17(8): 923-933)
    [79] Liu W, Lin W S. Additive white Gaussian noise level estimation in SVD domain for images. IEEE Transactions on Image Processing, 2013, 22(3): 872-883
    [80] Zhai G T, Wu X L. Noise estimation using statistics of natural images. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE, 2011. 1857-1860
    [81] Pyatykh S, Hesser J, Zheng L. Image noise level estimation by principal component analysis. IEEE Transactions on Image Processing, 2013, 22(2): 687-699
    [82] Tang C, Yang X, Zhai G. Noise estimation of natural images via statistical analysis and noise injection. IEEE Transactions on Circuits and Systems for Video Technology, 2014, PP(99): 1-12
    [83] Wu H R, Yuen M. A generalized block-edge impairment metric for video coding. IEEE Signal Processing Letters, 1997, 4(11): 317-320
    [84] Yang J H, Choi H, Kim T. Noise estimation for blocking artifacts reduction in DCT coded images. IEEE Transactions on Circuits and Systems for Video Technology, 2000, 10(7): 1116-1120
    [85] Pan F, Lin X, Rahardja S, Lin W, Ong E, Yao S, Lu Z, Yang X. A locally-adaptive algorithm for measuring blocking artifacts in images and videos. In: Proceedings of the 2004 International Symposium on Circuits and Systems. New York, USA: IEEE, 2004, 3: III-925-928
    [86] Suthaharan S. A perceptually significant block-edge impairment metric for digital video coding. In: Proceedings of the 2003 International Conference on Multimedia and Expo. Baltimore, MD, USA: IEEE, 2003, 2: II-585-II-588
    [87] Kirenko I O, Muijs R, Shao L. Coding artifact reduction using non-reference block grid visibility measure. In: Proceedings of the 2006 IEEE International Conference on Multimedia and Expo. Toronto, Ont.: IEEE, 2006. 469-472
    [88] Perra C, Massidda F, Giusto D D. Image blockiness evaluation based on Sobel operator. In: Proceedings of the 2005 IEEE International Conference on Image Processing. Genova: IEEE, 2005. I-389-392
    [89] Zhang H, Zhou Y R, Tian X. A weighted Sobel operator-based no-reference blockiness metric. In: Proceedings of the 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Wuhan, China: IEEE, 2008. 1002-1006
    [90] Lee S, Park S J. A new image quality assessment method to detect and measure strength of blocking artifacts. Signal Processing: Image Communication, 2012, 27(1): 31-38
    [91] Chen J H, Zhang Y B, Liang L H, Ma S W, Wang R G, Gao W. A no-reference blocking artifacts metric using selective gradient and plainness measures. In: Proceedings of the 9th Pacific Rim Conference on Multimedia: Advances in Multimedia Information Processing. Berlin, Germany: Springer, 2008. 894-897
    [92] Hasan M M, Ahn K, Haque M S, Oksam C. Blocking artifact detection by analyzing the distortions of local properties in images. In: Proceedings of the 14th International Conference on Computer and Information Technology. Dhaka, Bangladeshi: IEEE, 2011. 475-480
    [93] Pan F, Lin X, Rahardja S, Ong E P, Lin W S. Measuring blocking artifacts using edge direction information [image and video coding]. In: Proceedings of the 2004 IEEE International Conference on Multimedia and Expo. Taipei, China: IEEE, 2004. 1491-1494
    [94] Pan F, Lin X, Rahardja S, Ong E P, Lin W S. Using edge direction information for measuring blocking artifacts of images. Multidimensional Systems and Signal Processing, 2007, 18(4): 297-308
    [95] Wang Z, Bovik A C, Evan B L. Blind measurement of blocking artifacts in images. In: Proceedings of the 2000 International Conference on Image Processing. Vancouver, BC: IEEE, 2000. 981-984
    [96] Meesters L, Martens J B. A single-ended blockiness measure for JPEG-coded images. Signal Processing, 2002, 82(3): 369 -387
    [97] Liu H T, Heynderickx I. A perceptually relevant no-reference blockiness metric based on local image characteristics. EURASIP Journal on Advances in Signal Processing, 2009, 2009: 1-14
    [98] Suthaharan S. No-reference visually significant blocking artifact metric for natural scene images. Signal Processing, 2009, 89(8): 1647-1652
    [99] Chen C H, Bloom J A. A blind reference-free blockiness measure. In: Proceedings of the 11th Pacific Rim Conference on Advances in Multimedia Information Processing. Berlin, Germany: Springer, 2010, 1: 112-123
    [100] Bovik A C, Liu S Z. DCT-domain blind measurement of blocking artifacts in DCT-coded images. In: Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, UT: IEEE, 2001, 3: 1725-1728
    [101] Liu S Z, Bovik A C. Efficient DCT-domain blind measurement and reduction of blocking artifacts. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(12): 1139-1149
    [102] Park C S, Kim J H, Ko S J. Fast blind measurement of blocking artifacts in both pixel and DCT domains. Journal of Mathematical Imaging and Vision, 2007, 28(3): 279-284
    [103] Ryu S, Sohn K. Blind blockiness measure based on marginal distribution of wavelet coefficient and saliency. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC: IEEE, 2013. 1874-1878
    [104] Wang Z, Sheikh H R, Bovik A C. No-reference perceptual quality assessment of JPEG compressed images. In: Proceedings of the 2002 International Conference on Image Processing. Rochester, NY, USA: IEEE, 2002. I-477-I-480
    [105] Colestaneh S A, Chandler D M. No-reference quality assessment of jpeg images via a quality relevance map. IEEE Signal Processing Letters, 2014, 21(2): 155-158
    [106] Gastaldo P, Zunino R. Neural networks for the no-reference assessment of perceived quality. Journal of Electronic Imaging, 2005, 14(3): 033004, 1-11
    [107] Bagade J V, Dandawate Y H, Singh K. No reference image quality assessment using block based features and artificial neural network. In: Proceedings of the 4th International Conference, ObCom 2011. Berlin, Germany: Springer, 2011, 270: 128-138
    [108] Corchs S, Gasparini F, Schettini R. No reference image quality classification for JPEG-distorted images. Digital Signal Processing, 2014, 30: 86-100
    [109] Sheikh H R, Bovik A C, Cormack L. Blind quality assessment of JPEG2000 compressed images using natural scene statistics. In: Proceedings of the 37th Asilomar Conference on Signals, Systems, and Computers. New York, USA: IEEE, 2003. 1403-1407
    [110] Sheikh H R, Bovik A C, Cormack L. No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 2005, 14(11): 1918- 1927
    [111] Zhou J C, Xiao B H, Li Q D. A no-reference image quality assessment method for JPEG2000. In: Proceedings of the 2008 International Joint Conference on Neural Networks. Hong Kong, China: IEEE, 2008. 863-868
    [112] Vu P V, Chandler D M. A no-reference quality assessment algorithm for JPEG2000 compressed images based on local sharpness. In: Proceedings of the 2013 SPIE Image Quality and System Performance X. California, USA: SPIE, 2013, 8653: 1-8
    [113] Tong H H, Li M J, Zhang H J, Zhang C S. No-reference quality assessment for JPEG2000 compressed images. In: Proceedings of the 2004 International Conference on Image Processing. Singapore: IEEE, 2004. 3539-3542
    [114] Sazzad Z M P, Kawayoke Y, Horita Y. Spatial features based no-reference image quality assessment for JPEG2000. In: Proceedings of the 14th IEEE International Conference on Image Processing. San Antonio, TX: IEEE, 2007, 3: III-517-III-520
    [115] Sazzad Z M P, Kawayoke Y, Horita Y. No-reference image quality assessment for JPEG2000 based on spatial features. Signal Processing: Image Communication, 2008, 23(4): 257 -268
    [116] Zhang J, Le T M. A new no-reference quality metric for JPEG2000 images. IEEE Transactions on Consumer Electronics, 2010, 56(2): 743-750
    [117] Zhang J, Ong S H, Le T M. Kurtosis-based no-reference quality assessment of JPEG2000 images. Signal Processing: Image Communication, 2011, 26(1): 13-23
    [118] Barland R, Saadane A. A reference free quality metric for compressed images. In: Proceedings of the 2nd International Workshop on Video Processing and Quality Metrics for Consumer Electronics. Arizona State University, USA: IEEE, 2006. 1-6
    [119] Liu H T, Redi J A, Alers H, Zunino R, Heynderickx I. No-reference image quality assessment based on localized gradient statistics: application to JPEG and JPEG2000. In: Proceedings of the 2010 IS T-SPIE Electronic Imaging and Human Vision and Electronic Imaging XV. San Jose, USA: SPIE, 2010, 7527: 1-9
    [120] Moorthy A K, Bovik A C. A two-step framework for constructing blind image quality indices. IEEE Signal Processing Letters, 2010, 17(2): 513-516
    [121] Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 2011, 20(12): 3350- 3364
    [122] Mittal A, Moorthy A K, Bovik A C. Blind/referenceless image spatial quality evaluator. In: Proceedings of the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA: IEEE, 2011. 723-727
    [123] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708
    [124] Saad M A, Bovik A C, Charrier C. Natural DCT statistics approach to no-reference image quality assessment. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 313-316
    [125] Tang H X, Joshi N, Kapoor A. Learning a blind measure of perceptual image quality. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 305-312
    [126] Zhang M, Xie J, Zhou X R, Fujita H. No-reference image quality assessment based on local binary pattern statistics. In: Proceedings of the 2013 Visual Communications and Image Processing. Kuching, Malaysia: IEEE, 2013. 1-6
    [127] Zhang Y, Chandler D M. An algorithm for no-reference image quality assessment based on log-derivative statistics of natural scenes. In: Proceedings of the 2013 SPIE The International Society for Optical Engineering. California, USA: SPIE, 2013, 22(4): 1-10
    [128] Zhang Y, Chandler D M. No-reference image quality assessment based on log-derivative statistics of natural scenes. Journal of Electronic Imaging, 2013, 22(4): 043025-1- 043025-22
    [129] Liu L X, Dong H P, Huang H, Bovik A C. No-reference image quality assessment in curvelet domain. Signal Processing: Image Communication, 2014, 29(4): 494-505
    [130] Saad M A, Bovik A C, Charrier C. A DCT statistics-based blind image quality index. IEEE Signal Processing Letters, 2010, 17(6): 583-586
    [131] Saad M A, Bovik A C, Charrier C. DCT statistics model-based blind image quality assessment. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE, 2011. 3093-3096
    [132] Saad M A, Bovik A C, Charrier C. Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352
    [133] Jiao S H, Qi H, Lin W S, Shen W H. Fast and efficient blind image quality index in spatial domain. Electronics Letters, 2013, 49(18): 1137-1138
    [134] Mittal A, Soundararajan R, Bovik A C. Making a ''completely blind'' image quality analyzer. IEEE Signal Processing Letters, 2013, 20(3): 209-212
    [135] Abdalmajeed S, Jiao S H. No-reference image quality assessment algorithm based on Weibull statistics of log-derivatives of natural scenes. Electronics Letters, 2014, 50(8): 595-596
    [136] Ye P, Doermann D. No-reference image quality assessment based on visual codebook. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE, 2011. 3089-3092
    [137] Ye P, Doermann D. No-reference image quality assessment using visual codebooks. IEEE Transactions on Image Processing, 2012, 21(7): 3129-3138
    [138] Ye P, Kumar J, Kang L, Doermann D. Unsupervised feature learning framework for no-reference image quality assessment. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012. 1098-1105
    [139] Mittal A, Muralidhar G S, Ghosh J, Bovik A C. Blind image quality assessment without human training using latent quality factors. IEEE Signal Processing Letters, 2012, 19(2): 75-78
    [140] Fang R G, Wu D P. No-reference image quality assessment based on BNB measurement. In: Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Beijing, China: IEEE, 2013. 528-532
    [141] Tong H H, LI M J, Zhang H J, Zhang C S, He J, Ma W Y. Learning no-reference quality metric by examples. In: Proceedings of the 11th International Multimedia Modelling Conference. Melbourne, Australia: IEEE, 2005. 247-254
    [142] Shen J, Li Q, Erlebacher G. Hybrid no-reference natural image quality assessment of noisy, blurry, JPEG2000, and JPEG images. IEEE Transactions on Image Processing, 2011, 20(8): 2089-2098
    [143] Wu Q B, Li H L, Ngan K N, Zeng B, Gabbouj M. No-reference image quality metric via distortion identification and multi-channel label transfer. In: Proceedings of the 2014 IEEE International Symposium on Circuits and Systemss. Melbourne VIC: IEEE, 2014. 530-533
    [144] Suresh S, Babu R V, Sundararajan N. Image quality measurement using sparse extreme learning machine classifier. In: Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2006. 1-6
    [145] Suresh S, Babu R V, Kim H J. No-reference image quality assessment using modified extreme learning machine classifier. Applied Soft Computing, 2009, 9(2): 541-552
    [146] Li C F, Bovik A C, Wu X J. Blind image quality assessment using a general regression neural network. IEEE Transactions on Neural Networks, 2011, 22(5): 793-799
    [147] Li Chao-Feng, Tang Guo-Feng, Wu Xiao-Jun, Ju Yi-Wen. No-reference image quality assessment with learning phase congruency feature. Journal of Electronics and Information Technology, 2013, 35(2): 484-488(李朝锋, 唐国凤, 吴小俊, 琚宜文. 学习相位一致特征的无参考图像质量评价. 电子与信息学报, 2013, 35(2): 484-488)
    [148] Kang L, Ye P, Li Y, Doermann D. Convolutional neural networks for no-reference image quality assessment. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH: IEEE, 2014. 1733 -1740
    [149] Hou W L, Gao X B, Tao D C, Li X L. Blind image quality assessment via deep learning. IEEE Transactions on Neural Networks and Learning Systems, 2014, 26(6): 1275-1286
    [150] Panetta K, Gao C, Agaian S. No-reference color image contrast and quality measures. IEEE Transactions on Consumer Electronics, 2013, 59(3): 643-651
    [151] Gu K, Zhai G T, Yang X K, Zhang W J. Hybrid no-reference quality metric for singly and multiply distorted images. IEEE Transactions on Broadcasting, 2014, 60(3): 555-567
    [152] Gao X B, Gao F, Tao D C, Li X L. Universal blind im-age quality assessment metrics via natural scene statistics and multiple kernel learning. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(12): 2013-2026
    [153] Gu Z Y, Zhang L, Liu X X, Li H Y, Lu J W. Learning quality-aware filters for no-reference image quality assess- ment. In: Proceedings of the 2014 IEEE International Con- ference on Multimedia and Expo. Chengdu, China: IEEE, 2014. 1-6
  • 加载中
计量
  • 文章访问数:  7830
  • HTML全文浏览量:  427
  • PDF下载量:  5323
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-03
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回