2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于箱式粒子滤波的群目标跟踪算法

李振兴 刘进忙 李松 白东颖 倪鹏

李振兴, 刘进忙, 李松, 白东颖, 倪鹏. 基于箱式粒子滤波的群目标跟踪算法. 自动化学报, 2015, 41(4): 785-798. doi: 10.16383/j.aas.2015.c140222
引用本文: 李振兴, 刘进忙, 李松, 白东颖, 倪鹏. 基于箱式粒子滤波的群目标跟踪算法. 自动化学报, 2015, 41(4): 785-798. doi: 10.16383/j.aas.2015.c140222
LI Zhen-Xing, LIU Jin-Mang, LI Song, BAI Dong-Ying, NI Peng. Group Targets Tracking Algorithm Based on Box Particle Filter. ACTA AUTOMATICA SINICA, 2015, 41(4): 785-798. doi: 10.16383/j.aas.2015.c140222
Citation: LI Zhen-Xing, LIU Jin-Mang, LI Song, BAI Dong-Ying, NI Peng. Group Targets Tracking Algorithm Based on Box Particle Filter. ACTA AUTOMATICA SINICA, 2015, 41(4): 785-798. doi: 10.16383/j.aas.2015.c140222

基于箱式粒子滤波的群目标跟踪算法

doi: 10.16383/j.aas.2015.c140222
基金项目: 

国家自然科学基金青年基金(61102109),航空科学基金项目(20120196003),空军工程大学防空反导学院"研究生科技创新基金"项目(HX1112)资助

详细信息
    作者简介:

    刘进忙 空军工程大学防空反导学院教授.主要研究方向为目标跟踪,多传感数据融合.E-mail:liujinmang1@163.com

    通讯作者:

    李振兴 空军工程大学防空反导学院博士研究生.2010年于空军航空大学获得硕士学位.主要研究方向为群目标跟踪,密集多目标分辨.本文通信作者.E-mail:lzxing1988@163.com

Group Targets Tracking Algorithm Based on Box Particle Filter

Funds: 

Supported by National Natural Science Foundation of Youth Fund of China(61102109), Aviation Science Foundation Project(20120196003), and Postgraduate Scientific Innovation Foundation Project of Air and Missile Defense College, Air Force Engineering University(HX1112)

  • 摘要: 在现有群目标跟踪方法中,粒子滤波(Particle filter, PF)算法常被用来解决点量测的非线性滤波问题.而当量测数据受到测量偏差或未知分布边界误差的影响时,传感器获得的点量测需要转换成区间量测,此时原有PF算法不能直接适用.因此,本文提出基于广义似然(Generalized likelihood, GL)函数加权的PF算法.该算法在原有PF算法的基础上,利用广义似然函数的积分解来计算区间量测下的粒子权重.为了降低算法的运算量问题,又提出基于箱式粒子滤波(Box particle filter, Box-PF)的群跟踪算法.首先,在目标状态空间内抽样矩形区域的箱式粒子.然后采用区间分析和约束传播方法,利用区间量测压缩后的粒子与预测粒子的容积比来计算粒子权重.最后,在群目标状态估计结果和群演化网络模型的基础上估计群结构.仿真实验结果表明,与GL-PF算法相比, Box-PF算法具有更高的运算效率,并能降低估计结果中的峰值误差.
  • [1] Waxmann M J, Drummond O E. A bibliography of cluster(group) tracking. In:Proceedings of the 2004 International Conference on Signal and Data Processing of Small Targets. Orlando, USA:SPIE, 2004. 551-560
    [2] [2] Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Boston:Artech House, 2007.
    [3] [3] Helbing D. Traffic and related self-driven many-particle systems. Reviews of Modern Physics, 2002, 73(4):1067-1141
    [4] [4] Pang S K, Li J, Godsill S. Detection and tracking of coordinated groups. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1):472-501
    [5] [5] Clark D, Godsill S. Group target tracking with the Gaussian mixture probability hypothesis density filter. In:Proceedings of the 3rd IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Melbourne, AU:IEEE, 2007. 149-154
    [6] [6] Koch J W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3):1042-1059
    [7] Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Tracking partly resolvable group targets using SMC-PHDF. Acta Automatica Sinica, 2010, 36(5):731-741(连峰, 韩崇昭, 刘伟峰, 元向辉. 基于SMC-PHDF的部分可分辨的群目标跟踪算法. 自动化学报, 2010, 36(5):731-741)
    [8] [8] Gning A, Mihaylova L, Maskell S, Pang S K, Godsill S. Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Transactions on Signal Processing, 2011, 59(4):1383-1395
    [9] [9] Gning A, Ristic B, Mihaylova L. Bernoulli particle/box-particle filters for detection and tracking in the presence of triple measurement uncertainty. IEEE Transactions on Signal Processing, 2012, 60(5):2138-2151
    [10] Abdallah F, Gning A, Bonnifait P. Box particle filtering for nonlinear state estimation using interval analysis. Automatica, 2008, 44(3):807-815
    [11] Gning A, Ristic B, Mihaylova L, Abdallah F. An introduction to box particle filtering. IEEE Signal Processing Magazine, 2013, 30(4):166-171
    [12] Zhao X G, Song L P. Box-particle implementation for cardinality balanced multi-target multi-Bernoulli filter. In:Proceedings of the 2013 China Summit and International Conference on Signal and Information Processing. Beijing, China:IEEE, 2013. 11-15
    [13] Schikora M, Gning A, Mihaylova L, Cremers D, Koch W, Streit R. Box-particle intensity filter. In:Proceedings of the 9th IET Algorithms and Applications Conference on Data Fusion and Target Tracking. London, UK:IET, 2012. 1-6
    [14] Petrov N, Gning A, Mihaylova L, Angelova D. Box particle filtering for extended object tracking. In:Proceedings of the 2012 International Conference on Information Fusion. Singapore, Singapore:IEEE, 2012. 82-89
    [15] Petrov N, Mihaylova L, Gning A. Rectangular extended object tracking with box particle filter using dynamic constraints. In:Proceedings of the 2014 IET Algorithms and Applications Conference on Data Fusion and Target Tracking. London, UK:IET, 2014. 1-7
    [16] Mihaylova L, Carmi A, Septier F, Gning A, Pang S K, Godsill S. Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking. Digital Signal Processing, 2014, 25:1-16
    [17] Blackman S, Popoli R. Design and Analysis of Modern Tracking Systems. Boston:Artech House Radar Library, 1999.
    [18] Li X R, Jilkov V. A survey of maneuvering target tracking Part I:dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1333-1364
    [19] Sheng Zhou, Xie Shi-Qian, Pan Cheng-Yi. Probability and Statistics.(3rd edition). Beijing:Advanced Education Press, 2001. 439-440(盛骤, 谢式千, 潘承毅. 概率论与数理统计. 第3版. 北京:高等教育出版社, 2001. 439-440)
    [20] Jaulin L, Kieffer M, Didrit O. Applied Interval Analysis. New York:Springer, 2001.
  • 加载中
计量
  • 文章访问数:  1933
  • HTML全文浏览量:  92
  • PDF下载量:  1955
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-03
  • 修回日期:  2014-10-27
  • 刊出日期:  2015-04-20

目录

    /

    返回文章
    返回