2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全变分的运动分割模型及分裂 Bregman 算法

王诗言 于慧敏

王诗言, 于慧敏. 基于全变分的运动分割模型及分裂 Bregman 算法. 自动化学报, 2015, 41(2): 396-404. doi: 10.16383/j.aas.2015.c140255
引用本文: 王诗言, 于慧敏. 基于全变分的运动分割模型及分裂 Bregman 算法. 自动化学报, 2015, 41(2): 396-404. doi: 10.16383/j.aas.2015.c140255
WANG Shi-Yan, YU Hui-Min. Motion Segmentation Model Based on Total Variation and Split Bregman Algorithm. ACTA AUTOMATICA SINICA, 2015, 41(2): 396-404. doi: 10.16383/j.aas.2015.c140255
Citation: WANG Shi-Yan, YU Hui-Min. Motion Segmentation Model Based on Total Variation and Split Bregman Algorithm. ACTA AUTOMATICA SINICA, 2015, 41(2): 396-404. doi: 10.16383/j.aas.2015.c140255

基于全变分的运动分割模型及分裂 Bregman 算法

doi: 10.16383/j.aas.2015.c140255
基金项目: 

国家重大科技专项(2014ZX03001027),国家重点基础研究发展计划(973计划)(2012CB316400),重庆邮电大学博士启动基金(A2014-09)资助

详细信息
    作者简介:

    于慧敏 浙江大学信息与电子工程学系教授. 主要研究方向为图像处理和计算机视觉. E-mail: yhm2004@zju.edu.cn

    通讯作者:

    王诗言 重庆邮电大学讲师. 2013 年获得浙江大学信息与通信工程专业博士学位. 主要研究方向为图像处理, 计算机视觉, 无线通信. 本文通信作者.E-mail: wangshiyan@cqupt.edu.cn

Motion Segmentation Model Based on Total Variation and Split Bregman Algorithm

Funds: 

Supported by National Science and Technology Major Project (2014ZX03001027), National Basic Research Program of China (973 Program) (2012CB316400), and Ph.D. Foundation of Chongqing University of Posts and Telecommunications (A2014-09)

  • 摘要: 提出了一种基于全变分的运动分割模型,可以适用于2D/3D视频.首先, 通过活动轮廓模型将分割与估计融合在同一能量函数中, 该模型能够同时进行分割曲面的演化和运动参数的估计. 其次,通过凸松弛方法将原始问题转化为等价的全变分模型, 克服了局部最小值问题.最后,采用分裂Bregman快速算法进行求解. 多组实验证明了本文方法对2D/3D视频的通用性和算法的高效性.
  • [1] Nikolov B, Kostov N, Yordanova S. Investigation of mixture of Gaussians method for background subtraction in traffic surveillance. International Journal of Reasoning-based Intelligent Systems, 2013, 5(3): 161-168
    [2] [2] Zhou X W, Yang C, Yu W C. Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 597-610
    [3] [3] Weinland D, Ronfard R, Boyer E. A survey of vision-based methods for action representation, segmentation and recognition. Computer Vision and Image Understanding, 2011, 115(2): 224-241
    [4] [4] Pinto A M, Correia M V, Paulo M A, Costa P G. Unsupervised flow-based motion analysis for an autonomous moving system. Image and Vision Computing, 2014, 32(6-7): 391-404
    [5] [5] Soheilian B, Paparoditis N, Vallet B. Detection and 3D reconstruction of traffic signs from multiple view color images. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77: 1-20
    [6] [6] Wu Q B, Xiong J, Luo B, Wang Z N. A segmentation-based chroma intra prediction coding scheme for H.264/AVC. Circuits, Systems, and Signal Processing, 2014, 33(3): 939-957
    [7] [7] Whitaker T R. A level-set approach to 3D reconstruction from range data. The International Journal of Computer Vision, 1998, 29(3): 203-231
    [8] [8] Chan T F, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics, 2004, 66(5): 1632-1648
    [9] [9] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268
    [10] Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685
    [11] Bresson X, Chan T F. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2(4): 455-484
    [12] Zach C, Pock T, Bischof H. A duality based approach for realtime Tv-L1 optical flow. In: Proceedings of the 29th DAGM Conference on Pattern Recognition. Berlin, Heidelberg: IEEE, 2007. 214-223
    [13] Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 2002, 50(3): 271-293
    [14] Mansouri A R, Mitiche A, EI-Feghali R. Spatio-temporal motion segmentation via level set partial differential equations. In: Proceedings of the 5th IEEE Southwest Symposium on Image Analysis and Interpretation, Santa Fe, USA: IEEE, 2002. 243-247
    [15] Wang S Y, Yu H M, Hu R. 3D video based segmentation and motion estimation with active surface evolution. Journal of Signal Processing Systems, 2013, 71(1): 21-34
    [16] Wang S Y, Yu H M. Primal-dual method for spatiotemporal tracking model with moving background. Journal of Zhejiang University (Engineering Science), 2013, 47(4): 630-637
    [17] Chan T F, Golub G H, Mulet P. A nonlinear primal dual method for total variation-based image restoration. SIAM Journal of Scientific Computing, 1999, 20(6): 1964-1977
    [18] Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97
    [19] Bresson X, Esedoglu S, Vandergheynst P, Thiran J, Osher S. Fast global minimization of the active contour/snake models. Journal of Mathematical Imaging and Vision, 2007, 28(2):151-167
    [20] Bregman L M. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 1967, 7(3): 200-217
    [21] Osher S, Burger M, Goldfarb D, Xu J J, Yin W T. An iterative regularization method for total variation-based image restoration. Multiscale Modeling and Simulation, 2005, 4(2): 460-489
  • 加载中
计量
  • 文章访问数:  1905
  • HTML全文浏览量:  127
  • PDF下载量:  773
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-17
  • 修回日期:  2014-09-01
  • 刊出日期:  2015-02-20

目录

    /

    返回文章
    返回