[1]
|
Flusser J, Suk T, Zitova B. Moments and Moment Invariants in Pattern Recognition. UK: John Wiley Sons, 2009.
|
[2]
|
[2] Teague M R. Image analysis via the general theory of moments. Journal of the Optical Society of America, 1980, 70(8): 920-930
|
[3]
|
[3] Teh C H, Chin R T. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 496-513
|
[4]
|
[4] Sheng Y L, Shen L X. Orthogonal Fourier-Mellin moments for invariant pattern recognition. Journal of the Optical Society of America A, 1994, 11(6): 1748-1757
|
[5]
|
[5] Khotanzad A, Hong Y H. Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 489-497
|
[6]
|
[6] Kim H K, Kim J D, Sim D G, Oh D I. A modified Zernike moment shape descriptor invariant to translation, rotation and scale for similarity-based image retrieval. In: Proceedings of the 2000 IEEE International Conference on Multimedia and Expo. New York, USA: IEEE, 2000. 307-310
|
[7]
|
[7] Novotni M, Klein R. 3D Zernike descriptors for content based shape retrieval. In: Proceedings of the 8th ACM Symposium on Solid Modeling and Applications. New York, USA: ACM, 2003. 216-225
|
[8]
|
[8] Gope C, Kehtarnavaz N, Hillman G. Zernike moment invariants based photo-identification using fisher discriminant model. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, USA: IEEE, 2004. 1455-1458
|
[9]
|
[9] Li S, Lee M C, Pun C M. Complex Zernike moments features for shape-based image retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2009, 39(1): 227-237
|
[10]
|
Chen Z, Sun S K. A Zernike moment phase-based descriptor for local image representation and matching. IEEE Transactions on Image Processing, 2010, 19(1): 205-219
|
[11]
|
Liao S X, Pawlak M. On image analysis by moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(3): 254-266
|
[12]
|
Liao S X, Pawlak M. On the accuracy of Zernike moments for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1358-1364
|
[13]
|
Xin Y Q, Pawlak M, Liao S. Accurate computation of Zernike moments in polar coordinate. IEEE Transactions on Image Processing, 2007, 16(2): 581-587
|
[14]
|
Kotoulas L, Andreadis I. Accurate calculation of image moments. IEEE Transactions on Image Processing, 2007, 16(8): 2028-2037
|
[15]
|
Lin H B, Si J, Abousleman P G. Orthogonal rotation-invariant moments for digital image processing. IEEE Transactions on Image Processing, 2008, 17(3): 272-282
|
[16]
|
Ma H, Qi D X, Song R X, Wang T J. The complete orthogonal v-system and its applications. Communications on Pure and Applied Analysis, 2007, 6(3): 853-871
|
[17]
|
Huang C, Yang L H, Qi D X. A new class of multi-wavelet bases: V-system. Acta Mathematica Sinica, English Series, 2012, 28(1): 105-120
|
[18]
|
Liang Yan-Yan, Song Rui-Xia, Wang Xiao-Chun, Qi Dong-Xu. Complete orthogonal V-system and its application in geometrical information reconstruction. Journal of Computer-Aided Design Computer Graphics, 2007, 19(7): 871-875, 883 (梁延研, 宋瑞霞, 王小春, 齐东旭. 完备正交V-系统及其在几何信息重构中的应用. 计算机辅助设计与图形学学报, 2007, 19(7): 871-875, 883)
|
[19]
|
Li Jian, Song Rui-Xia, Ye Meng-Jie, Liang Yan-Yan, Qi Dong-Xu. Orthogonal reconstruction of 3D model based on V-System over triangular domain. Chinese Journal of Computers, 2009, 32(2): 193-202(李坚, 宋瑞霞, 叶梦杰, 梁延研, 齐东旭. 基于三角域上V-系统的三维几何模型的正交重构. 计算机学报, 2009, 32(2): 193-202)
|
[20]
|
Song Rui-Xia, Chen Xi, Sun Hong-Lei, Yao Dong-Xing, Xue Guan-Chen. A novel algorithm of classification and retrieval for shape group. Journal of Computer-Aided Design Computer Graphics, 2011, 23(12): 1981-1986 (宋瑞霞, 陈曦, 孙红磊, 姚东星, 薛冠辰. 形状群组的分类和检索算法. 计算机辅助设计与图形学学报, 2011, 23(12): 1981-1986)
|
[21]
|
Qi Dong-Xu, Song Rui-Xia, Li Jian. Discontinuous Orthogonal Functions. Beijing: Scientific Press, 2011. (齐东旭, 宋瑞霞, 李坚. 非连续正交函数. 北京: 科学出版社, 2011.)
|