2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交旋转不变 V 矩及其在图像重建中的应用

陈伟 张晓婷

陈伟, 张晓婷. 正交旋转不变 V 矩及其在图像重建中的应用. 自动化学报, 2015, 41(2): 376-385. doi: 10.16383/j.aas.2015.c140347
引用本文: 陈伟, 张晓婷. 正交旋转不变 V 矩及其在图像重建中的应用. 自动化学报, 2015, 41(2): 376-385. doi: 10.16383/j.aas.2015.c140347
CHEN Wei, ZHANG Xiao-Ting. Orthogonal Rotation-invariant V Moments and Application to Image Reconstruction. ACTA AUTOMATICA SINICA, 2015, 41(2): 376-385. doi: 10.16383/j.aas.2015.c140347
Citation: CHEN Wei, ZHANG Xiao-Ting. Orthogonal Rotation-invariant V Moments and Application to Image Reconstruction. ACTA AUTOMATICA SINICA, 2015, 41(2): 376-385. doi: 10.16383/j.aas.2015.c140347

正交旋转不变 V 矩及其在图像重建中的应用

doi: 10.16383/j.aas.2015.c140347
基金项目: 

国家自然科学基金(61170320,61272026,61272364),北京市自然科学基金重点项目暨北京市教育委员会科技发展计划重点项目(KZ201210009011),中央高校基本科研业务费专项资金(JUSRP11416)资助

详细信息
    作者简介:

    张晓婷 江南大学数字媒体学院工程师.主要研究方向为数字媒体技术.E-mail: zhangxt6@163.com

    通讯作者:

    陈伟 江南大学数字媒体学院讲师.2013 年获得澳门科技大学理学博士学位. 主要研究方向为计算机图形学和图像处理. 本文通信作者.E-mail: wchen_jdsm@163.com

Orthogonal Rotation-invariant V Moments and Application to Image Reconstruction

Funds: 

Supported by National Natural Science Foundation of China (61170320, 61272026, 61272364), Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ201210009011), and Fundamental Research Funds for the Central Universities (JUSRP11416)

  • 摘要: 定义在单位圆盘上的正交旋转不变矩函数(如Zernike矩) 具有非常广泛的应用. 本文基于一类正交分段多项式函数系--V系统, 构造了一种新型的矩函数, 称之为正交旋转不变V矩(简称为V矩). 除了正交性、旋转不变性之外, 由于V系统具有次数低、表达式简单的优点, V矩能够避免传统矩函数中高阶多项式的计算, 从而能够保证数值稳定性, 降低计算复杂度. 实验结果表明, V矩比传统的正交旋转不变矩具有更好的图像重建与图像检索结果.
  • [1] Flusser J, Suk T, Zitova B. Moments and Moment Invariants in Pattern Recognition. UK: John Wiley Sons, 2009.
    [2] [2] Teague M R. Image analysis via the general theory of moments. Journal of the Optical Society of America, 1980, 70(8): 920-930
    [3] [3] Teh C H, Chin R T. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 496-513
    [4] [4] Sheng Y L, Shen L X. Orthogonal Fourier-Mellin moments for invariant pattern recognition. Journal of the Optical Society of America A, 1994, 11(6): 1748-1757
    [5] [5] Khotanzad A, Hong Y H. Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 489-497
    [6] [6] Kim H K, Kim J D, Sim D G, Oh D I. A modified Zernike moment shape descriptor invariant to translation, rotation and scale for similarity-based image retrieval. In: Proceedings of the 2000 IEEE International Conference on Multimedia and Expo. New York, USA: IEEE, 2000. 307-310
    [7] [7] Novotni M, Klein R. 3D Zernike descriptors for content based shape retrieval. In: Proceedings of the 8th ACM Symposium on Solid Modeling and Applications. New York, USA: ACM, 2003. 216-225
    [8] [8] Gope C, Kehtarnavaz N, Hillman G. Zernike moment invariants based photo-identification using fisher discriminant model. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, USA: IEEE, 2004. 1455-1458
    [9] [9] Li S, Lee M C, Pun C M. Complex Zernike moments features for shape-based image retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2009, 39(1): 227-237
    [10] Chen Z, Sun S K. A Zernike moment phase-based descriptor for local image representation and matching. IEEE Transactions on Image Processing, 2010, 19(1): 205-219
    [11] Liao S X, Pawlak M. On image analysis by moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(3): 254-266
    [12] Liao S X, Pawlak M. On the accuracy of Zernike moments for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1358-1364
    [13] Xin Y Q, Pawlak M, Liao S. Accurate computation of Zernike moments in polar coordinate. IEEE Transactions on Image Processing, 2007, 16(2): 581-587
    [14] Kotoulas L, Andreadis I. Accurate calculation of image moments. IEEE Transactions on Image Processing, 2007, 16(8): 2028-2037
    [15] Lin H B, Si J, Abousleman P G. Orthogonal rotation-invariant moments for digital image processing. IEEE Transactions on Image Processing, 2008, 17(3): 272-282
    [16] Ma H, Qi D X, Song R X, Wang T J. The complete orthogonal v-system and its applications. Communications on Pure and Applied Analysis, 2007, 6(3): 853-871
    [17] Huang C, Yang L H, Qi D X. A new class of multi-wavelet bases: V-system. Acta Mathematica Sinica, English Series, 2012, 28(1): 105-120
    [18] Liang Yan-Yan, Song Rui-Xia, Wang Xiao-Chun, Qi Dong-Xu. Complete orthogonal V-system and its application in geometrical information reconstruction. Journal of Computer-Aided Design Computer Graphics, 2007, 19(7): 871-875, 883 (梁延研, 宋瑞霞, 王小春, 齐东旭. 完备正交V-系统及其在几何信息重构中的应用. 计算机辅助设计与图形学学报, 2007, 19(7): 871-875, 883)
    [19] Li Jian, Song Rui-Xia, Ye Meng-Jie, Liang Yan-Yan, Qi Dong-Xu. Orthogonal reconstruction of 3D model based on V-System over triangular domain. Chinese Journal of Computers, 2009, 32(2): 193-202(李坚, 宋瑞霞, 叶梦杰, 梁延研, 齐东旭. 基于三角域上V-系统的三维几何模型的正交重构. 计算机学报, 2009, 32(2): 193-202)
    [20] Song Rui-Xia, Chen Xi, Sun Hong-Lei, Yao Dong-Xing, Xue Guan-Chen. A novel algorithm of classification and retrieval for shape group. Journal of Computer-Aided Design Computer Graphics, 2011, 23(12): 1981-1986 (宋瑞霞, 陈曦, 孙红磊, 姚东星, 薛冠辰. 形状群组的分类和检索算法. 计算机辅助设计与图形学学报, 2011, 23(12): 1981-1986)
    [21] Qi Dong-Xu, Song Rui-Xia, Li Jian. Discontinuous Orthogonal Functions. Beijing: Scientific Press, 2011. (齐东旭, 宋瑞霞, 李坚. 非连续正交函数. 北京: 科学出版社, 2011.)
  • 加载中
计量
  • 文章访问数:  1637
  • HTML全文浏览量:  68
  • PDF下载量:  839
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-15
  • 修回日期:  2014-08-29
  • 刊出日期:  2015-02-20

目录

    /

    返回文章
    返回