[1]
|
Li Jian-Zhong, Liu Xian-Min. An impotant aspect of big data: data usability. Journal of Computer Research and Development, 2013, 50(6): 1147-1162(李建中, 刘显敏. 大数据的一个重要方面: 数据可用性. 计算机研究与发展, 2013, 50(6): 1147-1162)
|
[2]
|
Liu Da-You, Chen Hui-Ling, Qi Hong, Yang Bo. Advances in spatiotemporal data mining. Journal of Computer Research and Development, 2013, 50(2): 225-239(刘大有, 陈慧灵, 齐红, 杨博. 时空数据挖掘研究进展. 计算机研究与发展, 2013, 50(2): 225-239)
|
[3]
|
Han Jian-Min, Yu Juan, Yu Hui-Qun, Jia Dong. A multi-level l-diversity model for numerical sensitive attributes. Journal of Computer Research and Development, 2011, 48(1): 147-158(韩建民, 于娟, 虞慧群, 贾洞. 面向数值型敏感属性的分级l-多样性模型. 计算机研究与发展, 2011, 48(1): 147-158)
|
[4]
|
Han Jian-Min, Cen Ting-Ting, Yu Hui-Qun. Research in microaggregation algorithm for k-anonymization. Acta Electronica Sinica, 2008, 36(10): 2021-2029(韩建民, 岑婷婷, 虞慧群. 数据表k-匿名化的微聚集算法研究. 电子学报, 2008, 36(10): 2021-2029)
|
[5]
|
Ni Wei-Wei, Xu Li-Zhen, Chong Zhi-Hong, Wu Ying-Jie, Liu Teng-Teng, Sun Zhi-Hui. A privacy-preserving data perturbation algorithm based on neighborhood entropy. Journal of Computer Research and Development, 2009, 46(3): 498-504(倪巍伟, 徐立臻, 崇志宏, 吴英杰, 刘腾腾, 孙志挥. 基于邻域属性熵的隐私保护数据干扰方法. 计算机研究与发展, 2009, 46(3): 498-504)
|
[6]
|
Yang Jing, Wang Bo. Personalized l-diversity algorithm for multiple sensitive attributes based on minimum selected degree first. Journal of Computer Research and Development, 2012, 49(9): 2603-2610(杨静, 王波. 一种基于最小选择度优先的多敏感属性个性化l-多样性算法. 计算机研究与发展, 2012, 49(9): 2603-2610)
|
[7]
|
Wang Bo, Yang Jing. A personalized privacy anonymous method based on inverse clustering. Acta Electronica Sinica, 2012, 40(5): 883-890(王波, 杨静. 一种基于逆聚类的个性化隐私匿名方法. 电子学报, 2012, 40(5): 883-890)
|
[8]
|
Zhou Shui-Geng, Li Feng, Tao Yu-Fei. Privacy preservation in database applications: a survey. Chinese Journal of Computers, 2009, 32(5): 847-861(周水庚, 李丰, 陶宇飞. 面向数据库应用的隐私保护研究综述. 计算机学报, 2009, 32(5): 847-861)
|
[9]
|
Xiong Ping, Zhu Tian-Qing. A data anonymization approach based on impurity gain and hierarchical clustering. Journal of Computer Research and Development, 2012, 49(7): 1545-1552(熊平, 朱天清. 基于杂度增益与层次聚类的数据匿名方法. 计算机研究与发展, 2012, 49(7): 1545-1552)
|
[10]
|
Samarati P, Sweeney L. Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. In: Proceedings of the 1998 IEEE Symposium on Research in Security and Privacy. Palo alto, CA: IEEE, 1998. 1-19
|
[11]
|
Sweeney L. k-anonymity: a model for protecting privacy. International Journal on Uncertainty Fuzziness and Knowledge-based Systems, 2002, 10(5): 557-570
|
[12]
|
Domingo-Ferrer J, Sramka M, Trujillo-Rasa R. Privacy-preserving publication of trajectories using microaggregation. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS. California, USA: ACM, 2010. 26-33
|
[13]
|
Monreale A, Andrienko G L, Andrienko N V, Giannotti F, Pedreschi D, Rinzivillo S. Movement data anonymity through generalization. Transactions on Data Privacy, 2010, 3(2): 91-121
|
[14]
|
Abul O, Bonchi F, Nanni M. Never walk alone: uncertainty for anonymity in moving objects databases. In: Proceedings of the 24th International Conference on Data Engineering. Cancun: IEEE, 2008. 376-385
|
[15]
|
Abul O, Bonchi F, Nanni M. Anonymization of moving objects databases by clustering and perturbation. Information Systems, 2010, 35(8): 884-910
|
[16]
|
Gruteser M, Grunwald D. Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services. San Francisco, USA: ACM, 2003. 31-42
|
[17]
|
Huo Z, Huang Y, Meng X F. History trajectory privacy-preserving through graph partition. In: Proceedings of the 1st International Workshop on Mobile Location-based Service. Beijing, China: ACM, 2011. 71-78
|
[18]
|
Chen L, M T, Oria V. Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland: ACM, 2005. 491-502
|
[19]
|
Tiakas E, Papadopoulos A N, Djordjevic-Kajan S. Searching for similar trajectories in spatial networks. Journal of Systems and Software, 2009, 82(5):772-788
|
[20]
|
Gao S, Ma J F, Sun C, Li X H. Balancing trajectory privacy and data utility using a personalized anonymization model. Journal of Network and Computer Applications, 2014, 38(1):125-134
|
[21]
|
Pan Xiao, Hao Xing, Meng Xiao-Feng. Privacy preserving towards continuous query in location-based services. Journal of Computer Research and Development, 2010, 47(1): 121-129(潘晓, 郝兴, 孟小峰. 基于位置服务中的连续查询隐私保护研究. 计算机研究与发展, 2010, 47(1): 121-129)
|
[22]
|
Huo Zheng, Meng Xiao-Feng. A survey of trajectory privacy-preserving techniques. Chinese Journal of Computers, 2011, 34(10): 1820-1830(霍峥, 孟小峰. 轨迹隐私保护技术研究. 计算机学报, 2011, 34(10): 1820-1830)
|
[23]
|
You T H, Peng W C, Lee W C. Protecting moving trajectories with dummies. In: Proceedings of the 8th International Conference on Mobile Data Management. Mannheim, Germany: IEEE, 2007. 278-282
|
[24]
|
Gao S, Ma J F, Shi W S, Zhan G X. LTPPM: a location and trajectory privacy protection mechanism in participatory sensing. Wireless Communications and Mobile Computing, 2012, doi: 10.1002/wcm.2324
|
[25]
|
Terrovitis M, Mamoulis N. Privacy preservation in the publication of trajectories. In: Proceedings of the 9th International Conference on Mobile Data Management. Beijing, China: IEEE, 2008. 65-72
|
[26]
|
Chen R, Fung B C M, Mohammed N, Desai B C, Wang K. Privacy-preserving trajectory data publishing by local suppression. Information Sciences, 2013, 231: 83-97
|
[27]
|
Nergiz M E, Atzori M, Saygin Y, G B. Towards trajectory anonymization: a generalization-based approach. In: Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in GIS and LBS. Irvine, California, USA: ACM, 2008. 52-61
|
[28]
|
Nergiz M E, Atzori M, Saygin Y, G B. Towards trajectory anonymization: a generalization-based approach. Transactions on Data Privacy, 2009, 2(1): 47-75
|
[29]
|
Huo Z, Meng X F, Hu H B, Huang Y. You can walk alone: trajectory privacy-preserving through significant stays protection. In: Proceedings of the 17th International Conference on Database Systems for Advanced Applications. Busan, South Korea: ACM, 2012. 351-366
|
[30]
|
Domingo-Ferrer J, Trujillo-Rasua R. Microaggregation- and permutation-based anonymization of movement data. Information Sciences, 2012, 208: 55-80
|
[31]
|
Xiong Ping, Zhu Tian-Qing, Wang Xiao-Feng. A survey on differential privacy and application. Chinese Journal of Computers, 2014, 37(1): 101-122(熊平, 朱天清, 王晓峰. 差分隐私保护及其应用. 计算机学报, 2014, 37(1): 101-122)
|
[32]
|
Zhang Xiao-Jian, Meng Xiao-Feng. Differential privacy in data publication and analysis. Chinese Journal of Computers, 2014, 37(4): 927-949(张啸剑, 孟小峰. 面向数据发布和分析的差分隐私保护. 计算机学报, 2014, 37(4): 927-949)
|
[33]
|
Chen R, Desai B C, Sossou N M. Differentially private transit data publication: a case study on the montreal transportation system. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China: ACM, 2012. 213-221
|
[34]
|
LeFevre K, DeWitt D, Ramakrishnan R. Mondrian multidimensional k-anonymity. In: Proceedings of the 22nd International Conference on Data Engineering. Atlanta, Georgia USA: IEEE, 2006. 25-36
|
[35]
|
Piorkowski M, Sarafijanovoc-Djukic N, Grossglauser M. A parsimonious model of mobile partitioned networks with clustering. In: Proceedings of the 1st International Conference on Communication Systems and Networks. Bangalore, India: IEEE, 2009. 1-10
|
[36]
|
Song Jin-Ling, Liu Guo-Hua. Selection algorithm for optimized k-values in k-anonymity model. Journal of Chinese Computer Systems, 2011, 32(10): 1987-1993(宋金玲, 刘国华. k-匿名隐私保护模型中k值的优化选择算法. 小型微型计算机系统, 2011, 32(10): 1987-1993)
|