2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分层弹性运动分析的非刚体跟踪方法

吕峰 邸慧军 陆耀 徐光祐

吕峰, 邸慧军, 陆耀, 徐光祐. 基于分层弹性运动分析的非刚体跟踪方法. 自动化学报, 2015, 41(2): 295-303. doi: 10.16383/j.aas.2015.c140375
引用本文: 吕峰, 邸慧军, 陆耀, 徐光祐. 基于分层弹性运动分析的非刚体跟踪方法. 自动化学报, 2015, 41(2): 295-303. doi: 10.16383/j.aas.2015.c140375
LV Feng, DI Hui-Jun, LU Yao, XU Guang-You. Non-rigid Tracking Method Based on Layered Elastic Motion Analysis. ACTA AUTOMATICA SINICA, 2015, 41(2): 295-303. doi: 10.16383/j.aas.2015.c140375
Citation: LV Feng, DI Hui-Jun, LU Yao, XU Guang-You. Non-rigid Tracking Method Based on Layered Elastic Motion Analysis. ACTA AUTOMATICA SINICA, 2015, 41(2): 295-303. doi: 10.16383/j.aas.2015.c140375

基于分层弹性运动分析的非刚体跟踪方法

doi: 10.16383/j.aas.2015.c140375
基金项目: 

国家自然科学基金(61273273,61003098),高等学校博士学科点专项科研基金(2012110110034),北京市教育委员会共建项目资助

详细信息
    作者简介:

    吕峰 北京理工大学计算机学院博士研究生. 主要研究方向为目标跟踪与动作识别. E-mail: lvfeng@bit.edu.cn

    通讯作者:

    陆耀 北京理工大学计算机学院教授.主要研究方向为神经网络, 图像和信号处理, 模式识别. 本文通信作者.E-mail: vis_yl@bit.edu.cn

Non-rigid Tracking Method Based on Layered Elastic Motion Analysis

Funds: 

Supported by National Natural Science Foundation of China (61273273, 61003098), Research Fund for the Doctoral Program of Higher Education of China (2012110110034), and Specialized Fund for Joint Building Project of Beijing Municipal Education Commission

  • 摘要: 采用时--空分层的弹性运动跟踪策略, 提出了一种分析长时运动稳定结构与短时运动局部变化的非刚体运动跟踪方法. 首先, 基于序贯形状聚类的分段弹性运动跟踪模型, 将整段图像序列分割成若干子段, 并利用弹性运动分析方法得到子段内各帧边缘点的对应关系和各类的平均形状, 获取短时局部运动变化细节. 然后, 通过基于贝叶斯网的整体搜索算法寻找时序上相邻聚类平均形状之间的对应关系, 进而得到整段运动的公共形状, 用于表示长时运动稳定结构. 通过计算公共形状与各类平均形状之间的变形关系, 可以建立各聚类平均形状之间的对应关系, 实现分段运动的连接. 本方法的特点是不依赖先验模型、 通用性好、 目标的描述能力强. 实验表明, 本方法与现有不依赖模型的方法相比,具有更好的长时稳定性和更高的跟踪精确度.
  • [1] Gavrila D M. The visual analysis of human movement: a survey. Computer Vision and Image Understanding, 1999, 73(1): 82-98
    [2] [2] Aggarwal J K, Cai Q. Human motion analysis: a review. Computer Vision and Image Understanding, 1999, 73(3): 428-440
    [3] [3] Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape models-their training and application. Computer Vision and Image Understanding, 1995, 61(1): 38-59
    [4] [4] Cootes T F. Deformable object modelling and matching. In: Proceedings of the 10th Asian Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2010. 1-10
    [5] [5] Huang X L, Zhang S, Wang Y, Metaxas D, Saamaras D. A hierarchical framework for high resolution facial expression tracking. In: Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop. Washington D.C., USA: IEEE, 2004. 22
    [6] [6] Aggarwal J K, Cai Q, Liao W, Sabata B. Nonrigid motion analysis: articulated and elastic motion. Computer Vision and Image Understanding, 1998, 70(2): 142-156
    [7] [7] Sundaram N, Brox T, Keutzer K. Dense point trajectories by GPU-accelerated large displacement optical flow. In: Proceedings of the 11th European Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2010. 438-451
    [8] [8] Brox T, Malik J. Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 500-513
    [9] [9] Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recognition via sparse spatio-temporal features. In: Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Washington D.C., USA: IEEE, 2005. 65-72
    [10] Liu T, Yuan Z J, Sun J, Wang J D, Zheng N N, Tang X O, Shum H Y. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367
    [11] Mahadevan V, Vasconcelos N. Saliency-based discriminant tracking. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1007-1013
    [12] Di H J, Tao L M, Xu G Y. A mixture of transformed hidden Markov models for elastic motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1817-1830
    [13] Cheng H T, Ahuja N. Exploiting nonlocal spatiotemporal structure for video segmentation. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012. 741-748
    [14] Li F X, Kim T, Humayun A, Tsai D, Rehg J. Video segmentation by tracking many Figure-Ground segments. In: Proceedings of the 2013 Computer Vision. Sydney, NSW: IEEE, 2013. 2191-2199
    [15] Shapiro L, Wang H, Brady J. A matching and tracking strategy for independently moving objects. British Machine Vision Conference, 1992.
    [16] Tagare H D. Shape-based nonrigid correspondence with application to heart motion analysis. IEEE Transactions on Medical Imaging, 1999, 18(7): 570-579
    [17] Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685
    [18] Matthews I, Baker S. Active appearance models revisited. International Journal of Computer Vision, 2004, 60(2): 135-164
    [19] Duta N, Jain A K, Dubuisson-Jolly M P. Automatic construction of 2D shape models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(5): 433-446
    [20] Huang X L, Paragios N, Metaxasm D N. Shape registration in implicit spaces using information theory and free form deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(8): 1303-1318
    [21] Paragios N, Rousson M, Ramesh V. Non-rigid registration using distance functions. Computer Vision and Image Understanding, 2003, 89(2-3): 142-165
    [22] Besl P J, McKay N D. A method for registration of 3d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
    [23] Fitzgibbon A. Robust registration of 2D and 3D point sets. Image and Vision Computing, 2003, 21(13): 1145-1153
    [24] Chui H L, Rangarajan A. A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 2003, 89(2-3): 114-141
    [25] Chui H, Rangarajan A, Zhang J, Leonard C M. Unsupervised learning of an atlas from unlabeled point-sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 160-172
    [26] Qi Y J, Hauptmann A, Liu T. Supervised classification for video shot segmentation. In: Proceedings of the 2003 International Conference on Multimedia and Expo. Washington D.C., USA: IEEE, 2003. 689-692
    [27] Wang Liang, Hu Wei-Ming, Tan Tie-Niu. A survey of visual analysis of human motion. Chinese Journal of Computers, 2002, 25(3): 225-237(王亮, 胡卫明, 谭铁牛. 人运动的视觉分析综述. 计算机学报, 2002, 25(3): 225-237)
    [28] Ye Hang-Jun, Bai Xue-Sheng, Xu Guang-You. Face pose discrimination with support vector machines. Journal of Tsinghua University (Science and Technology), 2003, 43(1): 67-70(叶航军, 白雪生, 徐光祐. 基于支持向量机的人脸姿态判定. 清华大学学报(自然科学版), 2003, 43(1): 67-70)
  • 加载中
计量
  • 文章访问数:  1469
  • HTML全文浏览量:  34
  • PDF下载量:  1013
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-10-13
  • 刊出日期:  2015-02-20

目录

    /

    返回文章
    返回