[1]
|
Qaisar S, Bilal R M, Iqbal W, Naureen M, Sungyoung L. Compressive sensing: from theory to applications, a survey. Journal of Communications and Networks, 2013, 15(5): 443 -456
|
[2]
|
[2] Guo W H, Qin J, Yin W T. A New Detail-preserving Regularity Scheme. Technical Report, Rice CAAM, 2013.
|
[3]
|
[3] Xu Y Y, Yin W T. A fast patch-dictionary method for whole-image recovery. Technical Report, UCLA CAM, 2013.
|
[4]
|
[4] Baraniuk R G, Cevher V, Duarte M F, Hegde C. Model-based compressive sensing. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001
|
[5]
|
[5] Chen C, Huang J Z. Compressive sensing MRI with wavelet tree sparsity. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS). Nevada, USA: NIPS, 2012. 1124-1132
|
[6]
|
[6] He L H, Carin L. Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2009, 57(9): 3488-3497
|
[7]
|
[7] Lustig M, Donoho D L, Santos J M, Pauly J M. Compressed sensing MRI. IEEE Signal Processing Magazine, 2008, 25(2): 72-82
|
[8]
|
[8] Ma S W, Yin W T, Zhang Y, Chakraborty A. An efficient algorithm for compressed MR imaging using total variation and wavelets. In: Proceedings of the 2008 Computer Vision and Pattern Recognition (CVPR). Anchorage, AK: IEEE, 2008. 1-8
|
[9]
|
[9] Egiazarian K, Foi A, Katkovnik V. Compressed sensing image reconstruction via recursive spatially adaptive filtering. In: Proceedings of the 2007 International Conference on Image Processing (ICIP). San Antonio, TX: IEEE, 2007. 549- 552
|
[10]
|
Dong W S, Zhang L, Shi G M, Li X. Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 2013, 22(4): 1620-1630
|
[11]
|
Waters A E, Sankaranarayanan A C, Baraniuk R G. SpaRCS: recovering low-rank and sparse matrices from compressive measurements. In: Proceedings of the 25th Annual Conference on Neural Information Processing Systems (NIPS). Granada, Spain: NIPS, 2011. 1089-1097
|
[12]
|
Ji H, Liu C Q, Shen Z W, Xu Y H. Robust video denoising using low rank matrix completion. In: Proceedings of the 2010 Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 1791-1798
|
[13]
|
Otazo R, Cands E, Sodickson D K. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magnetic Resonance in Medicine, DOI: 10.1002/mrm.25240
|
[14]
|
Bioucas D J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage thresholding algorithms for image restoration. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004
|
[15]
|
Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259- 268
|
[16]
|
Luo J H, Li W Q, Zhu Y M. Reconstruction from limited-angle projections based on -u spectrum analysis. IEEE Transactions on Image Processing, 2010, 19(1): 131-140
|
[17]
|
Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2005. 60-65
|
[18]
|
Chan T F, Esedoglu S, Park F, Yip A. Recent Developments in Total Variation Image Restoration. Technical Report, Department of Mathematics, UCLA, 2004.
|
[19]
|
Chambolle A, Lions P L. Image recovery via total variation minimization and related problems. Numerische Mathematik, 1997, 76(2): 167-188
|
[20]
|
Goldfarb D, Yin W. Second-order cone programming methods for total variation based image restoration. SIAM Journal on Scientific Computing, 2005, 27(2): 622-645
|
[21]
|
Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12): 5406- 5425
|
[22]
|
Bioucas D J M, Figueiredo M A T. Two-step algorithms for linear inverse problems with non-quadratic regularization. In: Proceedings of the 2007 IEEE International Conference on Image Processing (ICIP). San Antonio, TX: IEEE, 2007. 105-108
|
[23]
|
Becker S, Bobin J, Cands E. NESTA: a fast and accurate first-order method for sparse recovery. SIAM Journal on Imaging Sciences, 2011, 4(1): 1-39
|
[24]
|
Yang J F, Zhang Y, Yin W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297
|
[25]
|
Yuan X M, Yang J F, Xiao Y H. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems and Imaging, 2012, 6(3): 547-563
|
[26]
|
Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring. IEEE Transactions on Image Processing, 2012, 21(4): 1715-1728
|
[27]
|
Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In: Proceedings of the 1999 IEEE International Conference on Computer Vision (ICCV). Kerkyra: IEEE, 1999. 1033-1038
|
[28]
|
Afonso M, Bioucas D J, Figueiredo M. Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356
|
[29]
|
Protter M, Elad M, Takeda H, Milanfar P. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 2009, 18(1): 36-51
|
[30]
|
Dong W, Yang X, Shi G. Compressive sensing via reweighted TV and nonlocal sparsity regularisation. Electronics Letters, 2013, 49(3): 184-186
|
[31]
|
Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2013, 16(8): 2080 -2095
|
[32]
|
Maggioni M, Katkovnik V, Egiazarian K, Foi A. A nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Transactions on Image Processing, 2013, 22(1): 119-133
|
[33]
|
MacQueen J B. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical. Berkeley California: Statistics and Probability, 1976. 281-297
|
[34]
|
Kohonen T. The self-organizing map. Proceedings of the IEEE, 1990, 78(9): 1464-1480
|
[35]
|
Hoppner F, Klawonn F, Kruse R, Runkler T. Fuzzy Cluster Analysis. Chichester: Wiley, 1999.
|
[36]
|
Gersho A. On the structure of vector quantizers. IEEE Transactions on Information Theory, 1982, 28(2): 157-166
|
[37]
|
Yang J F, Zhang Y. Alternating direction algorithms for L1-problems in compressive sensing. SIAM Journal on Scientific Computing, 2011, 33(1): 250-278
|
[38]
|
Mun S, Fowler J E. Residual reconstruction for block-based compressed sensing of video. In: Proceedings of the 2011 Data Compression Conference (DCC). Snowbird, UT: IEEE, 2011. 183-192
|