2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态压缩感知综述

荆楠 毕卫红 胡正平 王林

荆楠, 毕卫红, 胡正平, 王林. 动态压缩感知综述. 自动化学报, 2015, 41(1): 22-37. doi: 10.16383/j.aas.2015.c140087
引用本文: 荆楠, 毕卫红, 胡正平, 王林. 动态压缩感知综述. 自动化学报, 2015, 41(1): 22-37. doi: 10.16383/j.aas.2015.c140087
JING Nan, BI Wei-Hong, HU Zheng-Ping, WANG Lin. A Survey on Dynamic Compressed Sensing. ACTA AUTOMATICA SINICA, 2015, 41(1): 22-37. doi: 10.16383/j.aas.2015.c140087
Citation: JING Nan, BI Wei-Hong, HU Zheng-Ping, WANG Lin. A Survey on Dynamic Compressed Sensing. ACTA AUTOMATICA SINICA, 2015, 41(1): 22-37. doi: 10.16383/j.aas.2015.c140087

动态压缩感知综述

doi: 10.16383/j.aas.2015.c140087
基金项目: 

国家自然科学基金(61303233, 61201263, 61102110);河北省高等学校科学技术研究青年基金(QN20131058);河北省自然科学基金(F201 4203062)资助

详细信息
    作者简介:

    荆楠 燕山大学信息科学与工程学院副教授.2015年获燕山大学电路与系统博士学位.主要研究方向为时变稀疏信号估计及其应用,MIMO-OFDM系统信道估计.E-mail:jingnan@ysu.edu.cn

    通讯作者:

    毕卫红 燕山大学信息科学与工程学院教授.2003年获哈尔滨工业大学仪器科学与技术博士学位.主要研究方向为光电传感,光通信和无线传感器网络.本文通信作者. E-mail:jingenna@hotmail.com

A Survey on Dynamic Compressed Sensing

Funds: 

Supported by National Natural Science Foundation of China (61303233, 61201263, 61102110), Natural Science Research Programs of Hebei Educational Committee for University Young Teachers (QN20131058), and National Natural Science Foundation of Hebei (F2014203062)

  • 摘要: 动态压缩感(Dynamic compressed sensing, DCS)知由视频信号处理问题引出, 是压缩感知(Compressed sensing, CS)理论研究领域中新兴起的一个研究分支, 旨在处理信号支撑集随时间发生变化的时变稀疏信号, 较为成功的应用范例是动态核磁共振成像. 本文首先介绍动态系统模型, 给出时变稀疏信号支撑集缓慢变化的定义、 时变稀疏信号的稀疏表示和感知测量的方法; 其次, 建立一个统一的时变稀疏信号重构模型, 基于该模型对现有算法进行分类, 简要综述时变稀疏信号的重构算法, 并且对比分析算法的性能; 最后, 讨论动态压缩感知的应用, 并对其研究前景进行展望.
  • [1] Baraniuk R G. Compressive sensing [Lecture notes]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121
    [2] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 2006, 52(1): 6- 18
    [3] Candés E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
    [4] Simon D [Author], Zhang Yong-Gang, Li Ning, Ben Yue-Yang [Translator]. Optimal State Estimation——Kalman, H∞, and Nonlinear Approaches. Beijing: National Defense Industry Press, 2013. (Simon D [著], 张勇刚, 李宁, 奔粤阳 [译]. 最优状态估计——卡尔曼, H∞及非线性滤波. 北京: 国防工业出版社, 2013.)
    [5] Vaswani N. Kalman filtered compressed sensing. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, California, USA: IEEE, 2008. 893-896
    [6] Vaswani N. LS-CS-residual (LS-CS): compressive sensing on least squares residual. IEEE Transactions on Signal Processing, 2010, 58(8): 4108-4120
    [7] Vaswani N, Lu W. Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Transactions on Signal Processing, 2010, 58(9): 4595-4607
    [8] Lu W, Vaswani N. Regularized modified BPDN for noisy sparse reconstruction with partial erroneous support and signal value knowledge. IEEE Transactions on Signal Processing, 2012, 60(1): 182-196
    [9] Zhan J C, Vaswani N. Time invariant error bounds for modified-CS based sparse signal sequence recovery. In: Proceedings of the 2013 IEEE International Symposium on Information Theory. Istanbul, Turkey: IEEE, 2013. 286-290
    [10] Lu W, Vaswani N. Exact reconstruction conditions for regularized modified basis pursuit. IEEE Transactions on Signal Processing, 2012, 60(5): 2634-2640
    [11] Vaswani N. Stability (over time) of modified-CS for recursive causal sparse reconstruction. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing. Monticello, IL, USA: IEEE, 2010. 1722- 1729
    [12] Qiu C L, Vaswani N, Hogben L. Recursive robust PCA or recursive sparse recovery in large but structured noise. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 5954-5958
    [13] Sarkar R, Das S, Vaswani N. Tracking sparse signal sequences from nonlinear/non-Gaussian measurements and applications in illumination-motion tracking. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 6615-6619
    [14] Lu W, Vaswani N. Modified compressive sensing for real-time dynamic MR imaging. In: Proceedings of the 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 3045-3048
    [15] Karseras E, Leung K, Dai W. Tracking dynamic sparse signals using hierarchical Bayesian Kalman filters. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 6546-6550
    [16] Kalouptsidis N, Mileounis G, Babadi B, Tarokh V. Adaptive algorithms for sparse system identification. Signal Processing, 2011, 91(8): 1910-1919
    [17] Ziniel J, Potter L C, Schniter P. Tracking and smoothing of time-varying sparse signals via approximate belief propagation. In: Proceedings of Conference Record of the 44th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA: IEEE, 2010. 808-812
    [18] Salman A M. Dynamic Compressive Sensing: Sparse Recovery Algorithms for Streaming Signals and Video [Ph.,D. dissertation], Georgia Technology, USA, 2013.
    [19] Zachariah D, Chatterjee S, Jansson M. Dynamic iterative pursuit. IEEE Transactions on Signal Processing, 2012, 60(9): 4967-4972
    [20] Zachariah D, Chatterjee S, Jansson M. Dynamic subspace pursuit. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing. Kyoto, Japan: IEEE, 2012. 3605-3608
    [21] Guo Wen-Bin, Li Hang. Adaptive Kalman filter based on compressed sensing. Signal Processing, 2012, 28(6): 799- 805(郭文彬, 李航. 基于压缩感知的自适应卡尔曼滤波. 信号处理, 2012, 28(6): 799-805)
    [22] Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369-1377(李树涛, 魏丹. 压缩传感综述. 自动化学报, 2009, 35(11): 1369-1377)
    [23] Qaisar S, Bilal R M, Iqbal W, Naurren M, Lee S. Compressive sensing: from theory to applications, a survey. Journal of Communications and Networks, 2013, 15(5): 443-456
    [24] Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(3): 273- 282
    [25] Candés E, Tao T. The Dantzig selector: statistical estimation when p is much larger than n. The Annals of Statistics, 2007, 35(6): 2313-2351
    [26] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61
    [27] Fang Hong, Yang Hai-Rong. Greedy algorithms and compressed sensing. Acta Automatica Sinica, 2011, 37(12): 1413-1421(方红, 杨海蓉. 贪婪算法与压缩感知理论. 自动化学报, 2011, 37(12): 1413-1421)
    [28] Baron D, Sarvotham S, Baraniuk R G. Bayesian compressive sensing via belief propagation. IEEE Transactions on Signal Processing, 2010, 58(1): 269-280
    [29] Yang Hai-Rong, Fang Hong, Zhang Cheng, Wei Sui. Iterative hard thresholding algorithm based on backtracking. Acta Automatica Sinica, 2011, 37(3): 276-282(杨海蓉, 方红, 张成, 韦穗. 基于回溯的迭代硬阈值算法. 自动化学报,2011, 37(3): 276-282)
    [30] Ji S H, Xue Y, Carin L. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356
    [31] Mohimani G H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed l^0 norm. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301
    [32] Wang J, Ma J W, Han B, Li Q. Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography. Signal Processing, 2012, 92(12): 2952-2961
    [33] Gilbert A C, Strauss M J, Tropp J A, Vershynin R. One sketch for all: fast algorithms for compressed sensing. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing. San Diego, CA, USA: ACM, 2007. 237- 246
    [34] Dai Qiong-Hai, Fu Chang-Jun, Ji Xiang-Yang. Research on compressed sensing. Chinese Journal of Computers, 2011, 34(3): 425-434(戴琼海, 付长军, 季向阳. 压缩感知研究. 计算机学报, 2011, 34(3): 425-434)
    [35] Shi Guang-Ming, Liu Dan-Hua, Gao Da-Hua, Liu Zhe, Lin Jie, Wang Liang-Jun. Advances in theory and application of compressed sensing. Acta Electronica Sinica, 2009, 37(5): 1070-1081(石光明, 刘丹华, 高大化, 刘哲, 林杰, 王良君.压缩感知理论及其研究进展. 电子学报, 2009, 37(5): 1070-1081)
    [36] Lian Qiu-Sheng, Zhang Jun-Qin, Chen Shu-Zhen. Single image super-resolution algorithm based on two-stage and multi-frequency-band dictionaries. Acta Automatica Sinica, 2013, 39(8): 1310-1320(练秋生, 张钧芹, 陈书贞. 基于两级字典与分频带字典的图像超分辨率算法.自动化学报, 2013, 39(8): 1310-1320)
    [37] Dai L L, Gui G, Wang Z C, Yang Z X, Adachi F. Reliable and energy-efficient OFDM based on structured compressive sensing. In: Proceedings of the 2014 International Conference on Communications. Sydney, Australia: IEEE, 2014. 3963-3968
    [38] Liu Fang, Wu Jiao, Yang Shu-Yuan, Jiao Li-Cheng. Research advances on structured compressive sensing. Acta Automatica Sinica, 2013, 39(8): 1980-1995(刘芳, 武娇, 杨淑媛, 焦李成. 结构化压缩感知研究进展. 自动化学报,2013, 39(8): 1980-1995)
    [39] Charles A, Salman A M, Romberg J, Rozell C. Sparsity penalties in dynamical system estimation. In: Proceedings of the 45th Annual Conference on Information Sciences and Systems. Baltimore, MD, USA: IEEE, 2011. 1-6
    [40] Carmi A Y. Compressive system identification: sequential methods and entropy bounds. Digital Signal Processing, 2013, 23(3): 751-770
    [41] Gui G, Adachi F. Sparse least mean fourth algorithm for adaptive channel estimation in low signal-to-noise ratio region. International Journal of Communication Systems, 2013, DOI: 10.1002/dac.2531
    [42] Gui G, Adachi F. Stable adaptive sparse filtering algorithms for estimating multiple-input-multiple-output channels. IET Communications, 2014, 8(7): 1032-1040
    [43] Gui G, Peng W, Adachi F. Improved adaptive sparse channel estimation based on the least mean square algorithm. In: Proceedings of the 2003 IEEE Wireless Communications and Networking Conference. Shanghai, China: IEEE, 2013. 3105-3109
    [44] Carmi A Y, Mihaylova L, Kanevsky D. Unscented compressed sensing. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing. Kyoto, Japan: IEEE, 2012. 5249-5252
    [45] Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1: 211-244
    [46] Angelosante D, Bazerque J A, Giannakis G B. Online adaptive estimation of sparse signals: where RLS meets the l1-norm. IEEE Transactions on Signal Processing, 2010, 58(5): 3436-3447
    [47] Carmi A Y, Gurfl P, Kanevsky D. Methods for sparse signal recovery using Kalman filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Transactions on Signal Processing, 2010, 58(4): 2405-2409
    [48] Simon D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory and Applications, 2010, 4(8): 1303-1318
    [49] Vaswani N, Lu W. Recursive reconstruction of sparse signal sequences. Compressed Sensing and Sparse Filtering. Berlin, Heidelberg: Springer, 2014. 357-380
    [50] Salman A M, Romberg J. Dynamic updating for sparse time varying signals. In: Proceedings of the 43rd Annual Conference on Information Sciences and Systems. Baltimore, MD, USA: IEEE, 2009. 3-8
    [51] Salman A M, Romberg J. Dynamic updating for l1 minimization. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 421-434
    [52] Zhang Z L, Rao B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926
    [53] Charles S A, Rozell C J. Dynamic filtering of sparse signals using reweighted l1. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 6451-6455
    [54] Sejdinovic D, Andrieu C, Piechocki R. Bayesian sequential compressed sensing in sparse dynamical systems. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing. Monticello, IL, USA: IEEE, 2010. 1730-1736
    [55] Hu D, Wang X D, He H L. A new sparse channel estimation and tracking method for time-varying OFDM systems. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4648-4653
    [56] Sankaranarayanan A C, Turaga P K, Chellappa R, Baraniuk R G. Compressive acquisition of linear dynamical systems. SIAM Journal on Imaging Sciences, 2013, 6(4): 2109-2133
    [57] Salman A M, Fernandes F, Romberg J. Low-complexity video compression and compressive sensing. In: Proceedings of the 2013 Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA: IEEE, 2013. 579-583
    [58] Salman A M, Hamilton L, Brummer M, Romberg J. Motion-adaptive spatio-temporal regularization (MASTeR) for accelerated dynamic MRI. Magnetic Resonance in Medicine, 2013, 70(9): 800-821
    [59] Zhang Gui-Shan, Xiao Gang, Dai Zhuo-Zhi, Shen Zhi-Wei, Li Sheng-Kai, Wu Ren-Hua. Compressed sensing technology and its application in MRI. Chinese Journal Magnetic Resonance Imaging, 2013, 4(4): 314-320(张桂珊, 肖刚, 戴卓智, 沈智威, 李胜开, 吴仁华.压缩感知技术及其在MRI上的应用. 磁共振成像, 2013, 4(4):314-320)
    [60] Jung H, Sung K, Nayak K S, Kim E Y, Ye J C. k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magnetic Resonance in Medicine, 2009, 61(1): 103-116
    [61] Liu Ye, Yu An-Xi, Zhu Ju-Bo, Tang Ge-Shi. Survey of filter algorithms for ballistic target real-time tracking. Journal of Astronautics, 2013, 34(11): 1417-1426(刘也, 余安喜, 朱炬波, 唐歌实. 弹道目标实时跟踪中的滤波方法综述.宇航学报, 2013, 34(11): 1417-1426)
    [62] Jong M K, Ok K L, Jong C Y. Dynamic sparse support tracking with multiple measurement vectors using compressive music. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing. Kyoto, Japan: IEEE, 2012. 2717-2720
    [63] Applebaum L, Bajwa W U, Calderbank A R, Haupt J, Nowak R. Deterministic pilot sequences for sparse channel estimation in OFDM systems. In: Proceedings of the 17th International Conference on Digital Signal Processing. Corfu, Greece: IEEE, 2011. 1-7
    [64] Shamaiah M, Vikalo H. Estimating time-varying sparse signals under communication constraints. IEEE Transactions on Signal Processing, 2011, 59(6): 2961-2964
    [65] Sen G A, Preisig J. A geometric mixed norm approach to shallow water acoustic channel estimation and tracking. Physical Communication, 2012, 5(2): 119-128
    [66] Sainath T N, Kanevsky D, Nahamoo D, Ramabhadran B, Wright S. Sparse representations for speech recognition. Compressed Sensing and Sparse Filtering. Berlin, Heidelberg: Springer, 2014. 455-502
  • 加载中
计量
  • 文章访问数:  2476
  • HTML全文浏览量:  146
  • PDF下载量:  2088
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-14
  • 修回日期:  2014-08-06
  • 刊出日期:  2015-01-20

目录

    /

    返回文章
    返回