[1]
|
Baraniuk R G. Compressive sensing [Lecture notes]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121
|
[2]
|
Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 2006, 52(1): 6- 18
|
[3]
|
Candés E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
|
[4]
|
Simon D [Author], Zhang Yong-Gang, Li Ning, Ben Yue-Yang [Translator]. Optimal State Estimation——Kalman, H∞, and Nonlinear Approaches. Beijing: National Defense Industry Press, 2013. (Simon D [著], 张勇刚, 李宁, 奔粤阳 [译]. 最优状态估计——卡尔曼, H∞及非线性滤波. 北京: 国防工业出版社, 2013.)
|
[5]
|
Vaswani N. Kalman filtered compressed sensing. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, California, USA: IEEE, 2008. 893-896
|
[6]
|
Vaswani N. LS-CS-residual (LS-CS): compressive sensing on least squares residual. IEEE Transactions on Signal Processing, 2010, 58(8): 4108-4120
|
[7]
|
Vaswani N, Lu W. Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Transactions on Signal Processing, 2010, 58(9): 4595-4607
|
[8]
|
Lu W, Vaswani N. Regularized modified BPDN for noisy sparse reconstruction with partial erroneous support and signal value knowledge. IEEE Transactions on Signal Processing, 2012, 60(1): 182-196
|
[9]
|
Zhan J C, Vaswani N. Time invariant error bounds for modified-CS based sparse signal sequence recovery. In: Proceedings of the 2013 IEEE International Symposium on Information Theory. Istanbul, Turkey: IEEE, 2013. 286-290
|
[10]
|
Lu W, Vaswani N. Exact reconstruction conditions for regularized modified basis pursuit. IEEE Transactions on Signal Processing, 2012, 60(5): 2634-2640
|
[11]
|
Vaswani N. Stability (over time) of modified-CS for recursive causal sparse reconstruction. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing. Monticello, IL, USA: IEEE, 2010. 1722- 1729
|
[12]
|
Qiu C L, Vaswani N, Hogben L. Recursive robust PCA or recursive sparse recovery in large but structured noise. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 5954-5958
|
[13]
|
Sarkar R, Das S, Vaswani N. Tracking sparse signal sequences from nonlinear/non-Gaussian measurements and applications in illumination-motion tracking. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 6615-6619
|
[14]
|
Lu W, Vaswani N. Modified compressive sensing for real-time dynamic MR imaging. In: Proceedings of the 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 3045-3048
|
[15]
|
Karseras E, Leung K, Dai W. Tracking dynamic sparse signals using hierarchical Bayesian Kalman filters. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 6546-6550
|
[16]
|
Kalouptsidis N, Mileounis G, Babadi B, Tarokh V. Adaptive algorithms for sparse system identification. Signal Processing, 2011, 91(8): 1910-1919
|
[17]
|
Ziniel J, Potter L C, Schniter P. Tracking and smoothing of time-varying sparse signals via approximate belief propagation. In: Proceedings of Conference Record of the 44th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA: IEEE, 2010. 808-812
|
[18]
|
Salman A M. Dynamic Compressive Sensing: Sparse Recovery Algorithms for Streaming Signals and Video [Ph.,D. dissertation], Georgia Technology, USA, 2013.
|
[19]
|
Zachariah D, Chatterjee S, Jansson M. Dynamic iterative pursuit. IEEE Transactions on Signal Processing, 2012, 60(9): 4967-4972
|
[20]
|
Zachariah D, Chatterjee S, Jansson M. Dynamic subspace pursuit. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing. Kyoto, Japan: IEEE, 2012. 3605-3608
|
[21]
|
Guo Wen-Bin, Li Hang. Adaptive Kalman filter based on compressed sensing. Signal Processing, 2012, 28(6): 799- 805(郭文彬, 李航. 基于压缩感知的自适应卡尔曼滤波. 信号处理, 2012, 28(6): 799-805)
|
[22]
|
Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369-1377(李树涛, 魏丹. 压缩传感综述. 自动化学报, 2009, 35(11): 1369-1377)
|
[23]
|
Qaisar S, Bilal R M, Iqbal W, Naurren M, Lee S. Compressive sensing: from theory to applications, a survey. Journal of Communications and Networks, 2013, 15(5): 443-456
|
[24]
|
Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(3): 273- 282
|
[25]
|
Candés E, Tao T. The Dantzig selector: statistical estimation when p is much larger than n. The Annals of Statistics, 2007, 35(6): 2313-2351
|
[26]
|
Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61
|
[27]
|
Fang Hong, Yang Hai-Rong. Greedy algorithms and compressed sensing. Acta Automatica Sinica, 2011, 37(12): 1413-1421(方红, 杨海蓉. 贪婪算法与压缩感知理论. 自动化学报, 2011, 37(12): 1413-1421)
|
[28]
|
Baron D, Sarvotham S, Baraniuk R G. Bayesian compressive sensing via belief propagation. IEEE Transactions on Signal Processing, 2010, 58(1): 269-280
|
[29]
|
Yang Hai-Rong, Fang Hong, Zhang Cheng, Wei Sui. Iterative hard thresholding algorithm based on backtracking. Acta Automatica Sinica, 2011, 37(3): 276-282(杨海蓉, 方红, 张成, 韦穗. 基于回溯的迭代硬阈值算法. 自动化学报,2011, 37(3): 276-282)
|
[30]
|
Ji S H, Xue Y, Carin L. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356
|
[31]
|
Mohimani G H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed l^0 norm. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301
|
[32]
|
Wang J, Ma J W, Han B, Li Q. Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography. Signal Processing, 2012, 92(12): 2952-2961
|
[33]
|
Gilbert A C, Strauss M J, Tropp J A, Vershynin R. One sketch for all: fast algorithms for compressed sensing. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing. San Diego, CA, USA: ACM, 2007. 237- 246
|
[34]
|
Dai Qiong-Hai, Fu Chang-Jun, Ji Xiang-Yang. Research on compressed sensing. Chinese Journal of Computers, 2011, 34(3): 425-434(戴琼海, 付长军, 季向阳. 压缩感知研究. 计算机学报, 2011, 34(3): 425-434)
|
[35]
|
Shi Guang-Ming, Liu Dan-Hua, Gao Da-Hua, Liu Zhe, Lin Jie, Wang Liang-Jun. Advances in theory and application of compressed sensing. Acta Electronica Sinica, 2009, 37(5): 1070-1081(石光明, 刘丹华, 高大化, 刘哲, 林杰, 王良君.压缩感知理论及其研究进展. 电子学报, 2009, 37(5): 1070-1081)
|
[36]
|
Lian Qiu-Sheng, Zhang Jun-Qin, Chen Shu-Zhen. Single image super-resolution algorithm based on two-stage and multi-frequency-band dictionaries. Acta Automatica Sinica, 2013, 39(8): 1310-1320(练秋生, 张钧芹, 陈书贞. 基于两级字典与分频带字典的图像超分辨率算法.自动化学报, 2013, 39(8): 1310-1320)
|
[37]
|
Dai L L, Gui G, Wang Z C, Yang Z X, Adachi F. Reliable and energy-efficient OFDM based on structured compressive sensing. In: Proceedings of the 2014 International Conference on Communications. Sydney, Australia: IEEE, 2014. 3963-3968
|
[38]
|
Liu Fang, Wu Jiao, Yang Shu-Yuan, Jiao Li-Cheng. Research advances on structured compressive sensing. Acta Automatica Sinica, 2013, 39(8): 1980-1995(刘芳, 武娇, 杨淑媛, 焦李成. 结构化压缩感知研究进展. 自动化学报,2013, 39(8): 1980-1995)
|
[39]
|
Charles A, Salman A M, Romberg J, Rozell C. Sparsity penalties in dynamical system estimation. In: Proceedings of the 45th Annual Conference on Information Sciences and Systems. Baltimore, MD, USA: IEEE, 2011. 1-6
|
[40]
|
Carmi A Y. Compressive system identification: sequential methods and entropy bounds. Digital Signal Processing, 2013, 23(3): 751-770
|
[41]
|
Gui G, Adachi F. Sparse least mean fourth algorithm for adaptive channel estimation in low signal-to-noise ratio region. International Journal of Communication Systems, 2013, DOI: 10.1002/dac.2531
|
[42]
|
Gui G, Adachi F. Stable adaptive sparse filtering algorithms for estimating multiple-input-multiple-output channels. IET Communications, 2014, 8(7): 1032-1040
|
[43]
|
Gui G, Peng W, Adachi F. Improved adaptive sparse channel estimation based on the least mean square algorithm. In: Proceedings of the 2003 IEEE Wireless Communications and Networking Conference. Shanghai, China: IEEE, 2013. 3105-3109
|
[44]
|
Carmi A Y, Mihaylova L, Kanevsky D. Unscented compressed sensing. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing. Kyoto, Japan: IEEE, 2012. 5249-5252
|
[45]
|
Tipping M E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1: 211-244
|
[46]
|
Angelosante D, Bazerque J A, Giannakis G B. Online adaptive estimation of sparse signals: where RLS meets the l1-norm. IEEE Transactions on Signal Processing, 2010, 58(5): 3436-3447
|
[47]
|
Carmi A Y, Gurfl P, Kanevsky D. Methods for sparse signal recovery using Kalman filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Transactions on Signal Processing, 2010, 58(4): 2405-2409
|
[48]
|
Simon D. Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory and Applications, 2010, 4(8): 1303-1318
|
[49]
|
Vaswani N, Lu W. Recursive reconstruction of sparse signal sequences. Compressed Sensing and Sparse Filtering. Berlin, Heidelberg: Springer, 2014. 357-380
|
[50]
|
Salman A M, Romberg J. Dynamic updating for sparse time varying signals. In: Proceedings of the 43rd Annual Conference on Information Sciences and Systems. Baltimore, MD, USA: IEEE, 2009. 3-8
|
[51]
|
Salman A M, Romberg J. Dynamic updating for l1 minimization. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 421-434
|
[52]
|
Zhang Z L, Rao B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926
|
[53]
|
Charles S A, Rozell C J. Dynamic filtering of sparse signals using reweighted l1. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, BC, Canada: IEEE, 2013. 6451-6455
|
[54]
|
Sejdinovic D, Andrieu C, Piechocki R. Bayesian sequential compressed sensing in sparse dynamical systems. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing. Monticello, IL, USA: IEEE, 2010. 1730-1736
|
[55]
|
Hu D, Wang X D, He H L. A new sparse channel estimation and tracking method for time-varying OFDM systems. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4648-4653
|
[56]
|
Sankaranarayanan A C, Turaga P K, Chellappa R, Baraniuk R G. Compressive acquisition of linear dynamical systems. SIAM Journal on Imaging Sciences, 2013, 6(4): 2109-2133
|
[57]
|
Salman A M, Fernandes F, Romberg J. Low-complexity video compression and compressive sensing. In: Proceedings of the 2013 Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA: IEEE, 2013. 579-583
|
[58]
|
Salman A M, Hamilton L, Brummer M, Romberg J. Motion-adaptive spatio-temporal regularization (MASTeR) for accelerated dynamic MRI. Magnetic Resonance in Medicine, 2013, 70(9): 800-821
|
[59]
|
Zhang Gui-Shan, Xiao Gang, Dai Zhuo-Zhi, Shen Zhi-Wei, Li Sheng-Kai, Wu Ren-Hua. Compressed sensing technology and its application in MRI. Chinese Journal Magnetic Resonance Imaging, 2013, 4(4): 314-320(张桂珊, 肖刚, 戴卓智, 沈智威, 李胜开, 吴仁华.压缩感知技术及其在MRI上的应用. 磁共振成像, 2013, 4(4):314-320)
|
[60]
|
Jung H, Sung K, Nayak K S, Kim E Y, Ye J C. k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magnetic Resonance in Medicine, 2009, 61(1): 103-116
|
[61]
|
Liu Ye, Yu An-Xi, Zhu Ju-Bo, Tang Ge-Shi. Survey of filter algorithms for ballistic target real-time tracking. Journal of Astronautics, 2013, 34(11): 1417-1426(刘也, 余安喜, 朱炬波, 唐歌实. 弹道目标实时跟踪中的滤波方法综述.宇航学报, 2013, 34(11): 1417-1426)
|
[62]
|
Jong M K, Ok K L, Jong C Y. Dynamic sparse support tracking with multiple measurement vectors using compressive music. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing. Kyoto, Japan: IEEE, 2012. 2717-2720
|
[63]
|
Applebaum L, Bajwa W U, Calderbank A R, Haupt J, Nowak R. Deterministic pilot sequences for sparse channel estimation in OFDM systems. In: Proceedings of the 17th International Conference on Digital Signal Processing. Corfu, Greece: IEEE, 2011. 1-7
|
[64]
|
Shamaiah M, Vikalo H. Estimating time-varying sparse signals under communication constraints. IEEE Transactions on Signal Processing, 2011, 59(6): 2961-2964
|
[65]
|
Sen G A, Preisig J. A geometric mixed norm approach to shallow water acoustic channel estimation and tracking. Physical Communication, 2012, 5(2): 119-128
|
[66]
|
Sainath T N, Kanevsky D, Nahamoo D, Ramabhadran B, Wright S. Sparse representations for speech recognition. Compressed Sensing and Sparse Filtering. Berlin, Heidelberg: Springer, 2014. 455-502
|