2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于亚像素位移的超分辨率图像重建算法

张东晓 鲁林 李翠华 金泰松

张东晓, 鲁林, 李翠华, 金泰松. 基于亚像素位移的超分辨率图像重建算法. 自动化学报, 2014, 40(12): 2851-2861. doi: 10.3724/SP.J.1004.2014.02851
引用本文: 张东晓, 鲁林, 李翠华, 金泰松. 基于亚像素位移的超分辨率图像重建算法. 自动化学报, 2014, 40(12): 2851-2861. doi: 10.3724/SP.J.1004.2014.02851
ZHANG Dong-Xiao, LU Lin, LI Cui-Hua, JIN Tai-Song. Super-resolution Image Reconstruction Algorithm Based on Sub-pixel Shift. ACTA AUTOMATICA SINICA, 2014, 40(12): 2851-2861. doi: 10.3724/SP.J.1004.2014.02851
Citation: ZHANG Dong-Xiao, LU Lin, LI Cui-Hua, JIN Tai-Song. Super-resolution Image Reconstruction Algorithm Based on Sub-pixel Shift. ACTA AUTOMATICA SINICA, 2014, 40(12): 2851-2861. doi: 10.3724/SP.J.1004.2014.02851

基于亚像素位移的超分辨率图像重建算法

doi: 10.3724/SP.J.1004.2014.02851
基金项目: 

国家自然科学基金(61373077),国防基础科研计划(B0110155),国防科技重点实验室基金(9140C30211ZS8),高等学校博士学科点专项科研基金(20110121110020),福建省自然科学基金(2011J01365),福建省重点项目(2014H0034),航空科学基金(20125168001),黄慧贞集美大学学科建设基金(ZC2014010)资助

详细信息
    作者简介:

    张东晓 集美大学理学院讲师, 厦门大学信息科学与技术学院博士研究生.2006 年获得陕西师范大学数学与信息科学学院硕士学位. 主要研究方向为超分辨率图像重建技术.E-mail: zdx1980@gmail.com

    通讯作者:

    李翠华 工学博士, 厦门大学计算机科学系教授. 主要研究方向为计算机视觉,视频与图像处理, 超分辨率图像重建技术. 本文通信作者.E-mail: chli@xmu.edu.cn

Super-resolution Image Reconstruction Algorithm Based on Sub-pixel Shift

Funds: 

Supported by National Natural Science Foundation of China (61373077), National Defense Basic Scientific Research Program of China (B0110155), National Defense Science and Technology Key Laboratory Foundation (9140C30211ZS8), Specialized Research Fund for the Doctoral Program of Higher and Education of China (20110121110020), Natural Science Foundation of Fujian Province (2011J01365), Key Program of Fujian Province(2014H0034), Aeronautical Science Foundation of China (20125168001), and Huang Hui-Zhen Discipline Construction Fund of Jimei University (ZC2014010)

  • 摘要: 针对多帧图像超分辨率重建问题, 利用一阶泰勒展式, 在亚像素级上对图像退化过程进行建模, 并建立极小化能量函数, 选择Graph-cut算法进行能量极小化求解. 为了验证本文算法的有效性, 采用模拟图像退化过程和直接用相机拍摄两种方式获得低分辨率图像序列. 从4×4倍重建结果的比较来看, 本文算法不仅对模拟退化过程产生的低分辨率图像序列有效, 而且在提高真实低分辨率图像的分辨能力方面也有很好的效果. 此外, 实验结果表明本文算法对噪声有较好的抗干扰能力.
  • [1] Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 349-356
    [2] Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873
    [3] Pan Zong-Xu, Yu Jing, Hu Shao-Xing, Sun Wei-Dong. Single image super resolution based on multi-scale structural self-similarity. Acta Automatica Sinica, 2014, 40(4): 594-603(潘宗序, 禹晶, 胡少兴, 孙卫东. 基于多尺度结构自相似性的单幅图像超分辨率算法. 自动化学报, 2014, 40(4): 594-603)
    [4] Lian Qiu-Sheng, Zhang Jun-Qin, Chen Shu-Zhen. Single image super-resolution algorithm based on two-stage and multi-frequency-band dictionaries. Acta Automatica Sinica, 2013, 39(8): 1310-1320 (练秋生, 张钧芹, 陈书贞. 基于两级字典与分频带字典的图像超分辨率算法. 自动化学报, 2013, 39(8): 1310-1320)
    [5] Sun Yu-Bao, Fei Xuan, Wei Zhi-Hui, Xiao Liang. Sparsity regularized image super-resolution model via forward-backward. Acta Automatica Sinica, 2010, 36(9): 1232-1238 (孙玉宝, 费选, 韦志辉, 肖亮. 基于前向后向算子分裂的稀疏性正则化图像超分辨率算法. 自动化学报, 2010, 36(9): 1232-1238)
    [6] Li Min, Cheng Jian, Le Xiang, Luo Huan-Min. Super-resolution based on sparse dictionary coding. Journal of Software, 2012, 23(5): 1316-1324 (李民, 程建, 乐翔, 罗环敏. 稀疏字典编码的超分辨率重建. 软件学报, 2012, 23(5): 1316-1324)
    [7] Farsiu S, Robinson M D, Elad M, Milanfar P. Fast and robust multiframe super-resolution. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344
    [8] Li X L, Hu Y T, Gao X B, Tao D C, Ning B J. A multi-frame image super-resolution method. Signal Processing, 2010, 90(2): 405-414
    [9] An Yao-Zu, Lu Yao, Zhao Hong. An adaptive-regularized image super-resolution. Acta Automatica Sinica, 2012, 38(4): 601-608 (安耀祖, 陆耀, 赵红. 一种自适应正则化的图像超分辨率算法. 自动化学报, 2012, 38(4): 601-608)
    [10] Wang Guang-Xin, Wang Zheng-Ming. SAR image targets super-resolution based on regularization with variable norms. Acta Electronica Sinica, 2008, 36(12): 2389-2393 (王光新, 王正明. SAR图像目标超分辨的变范数正则化算法. 电子学报, 2008, 36(12): 2389-2393)
    [11] Mudenagudi U, Banerjee S, Kalra P K. Space-time super-resolution using graph-cut optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 995-1008
    [12] Chantas G K, Galatsanos N P, Woods N A. Super-resolution based on fast registration and maximum a posteriori reconstruction. IEEE Transactions on Image Processing, 2007, 16(7): 1821-1830
    [13] Lu Lin, Li Cui-Hua, Zhang Zhen, Yu Li-Bo, Zhang Dong-Xiao, Shi Hua. A method of images super-resolution reconstruction based on MRT-MAP frame. Journal of Xiamen University (Natural Science), 2012, 51(4): 696-700 (鲁林, 李翠华, 张珍, 余礼钹, 张东晓, 施华. 一种MRF-MAP框架下的图像超分辨率重建方法. 厦门大学学报(自然科学版), 2012, 51(4): 696-700)
    [14] Zhang Dong-Ming, Pan Wei, Chen Huai-Xin. Spatio-temporal adaptive super-resolution reconstruction of video sequence based on MAP frame. Acta Automatica Sinica, 2009, 35(5): 484-490 (张冬明, 潘炜, 陈怀新. 基于MAP框架的时空联合自适应视频序列超分辨率重建. 自动化学报, 2009, 35(5): 484-490)
    [15] Zhang Di, He Jia-Zhong. Feature space based face super-resolution reconstruction. Acta Automatica Sinica, 2012, 38(7): 1145-1152 (张地, 何家忠. 基于特征空间的人脸超分辨率重构. 自动化学报, 2012, 38(7): 1145-1152)
    [16] Ji H, Fermüller C. Robust wavelet-based super-resolution reconstruction: theory and algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(4): 649-660
    [17] Li Cui-Hua, Shi Hua, Dai Ping-Yang, Chen Jing, Du Xiao-Feng, Qu Yan-Yun, Xie Yi. Super-resolution image reconstruction based on gestalt theory. Journal of Xiamen University (Natural Science), 2011, 50(2): 261-270 (李翠华, 施华, 戴平阳, 陈婧, 杜晓凤, 曲延云, 谢怡. 引入格式塔理论的超分辨率图像重建技术. 厦门大学学报(自然科学版), 2011, 50(2): 261-270)
    [18] Panda S S, Prasad M S R S, Jena G. POCS based super-resolution image reconstruction using an adaptive regularization parameter. International Journal of Computer Science Issues, 2011, 8(5): 155-158
    [19] Huang Hua, Fan Xin, Qi Chun, Zhu Shi-Hua. Face image super-resolution reconstruction based on recognition and projection onto convex sets. Journal of Computer Research and Development, 2005, 42(10): 1718-1725 (黄华, 樊鑫, 齐春, 朱世华. 基于识别的凸集投影人脸图像超分辨率重建. 计算机研究与发展, 2005, 42(10): 1718-1725)
    [20] Baker S, Kanade T. Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183
    [21] Sun Yu-Bao, Wei Zhi-Hui, Xiao Liang, Zhang Zheng-Rong, Lv Zhan-Qiang. Multimorphology sparsity regularized image super resolution. Acta Electronica Sinica, 2010, 38(12): 2898-2903 (孙玉宝, 韦志辉, 肖亮, 张峥嵘, 吕战强. 多形态稀疏性正则化的图像超分辨率算法. 电子学报, 2010, 38(12): 2898-2903)
    [22] Takeda H, Milanfar P, Protter M, Elad M. Super-resolution without explicit subpixel motion estimation. IEEE Transactions on Image Processing, 2009, 18(9): 1958-1975
    [23] Yan Hua, Liu Ju. Super-resolution image restoration considering sub-pixel registration error. Acta Electronica Sinica, 2007, 35(7): 1409-1413 (闫华, 刘琚. 考虑亚像素配准误差的超分辨率图像复原. 电子学报, 2007, 35(7): 1409-1413)
    [24] Ben-Ezra M, Lin Z C, Wilburn B, Zhang W. Penrose pixels for super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(7): 1370-1383
    [25] Ben-Ezra M, Zomet A, Nayar S K. Video super-resolution using controlled subpixel detector shifts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 977-987
    [26] Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159
    [27] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239
    [28] Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137
    [29] Bergen J R, Anandan P, Hanna K J, Hingorani R. Hierarchical model-based motion estimation. In: Proceedings of the 2nd European Conference on Computer Vision. London, UK: IEEE, 1992. 237-252
  • 加载中
计量
  • 文章访问数:  3577
  • HTML全文浏览量:  298
  • PDF下载量:  1031
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-04
  • 修回日期:  2014-09-19
  • 刊出日期:  2014-12-20

目录

    /

    返回文章
    返回