2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于不确定性故障诊断的权重逻辑推理算法研究

董春玲 张勤

董春玲, 张勤. 用于不确定性故障诊断的权重逻辑推理算法研究. 自动化学报, 2014, 40(12): 2766-2781. doi: 10.3724/SP.J.1004.2014.02766
引用本文: 董春玲, 张勤. 用于不确定性故障诊断的权重逻辑推理算法研究. 自动化学报, 2014, 40(12): 2766-2781. doi: 10.3724/SP.J.1004.2014.02766
DONG Chun-Ling, ZHANG Qin. Research on Weighted Logical Inference for Uncertain Fault Diagnosis. ACTA AUTOMATICA SINICA, 2014, 40(12): 2766-2781. doi: 10.3724/SP.J.1004.2014.02766
Citation: DONG Chun-Ling, ZHANG Qin. Research on Weighted Logical Inference for Uncertain Fault Diagnosis. ACTA AUTOMATICA SINICA, 2014, 40(12): 2766-2781. doi: 10.3724/SP.J.1004.2014.02766

用于不确定性故障诊断的权重逻辑推理算法研究

doi: 10.3724/SP.J.1004.2014.02766
基金项目: 

国家自然科学基金(61402266,61273330),教育部博士学科点专项科研基金(20120002110037),中国广核集团研发项目(CNPRI-ST10P005),山东师范大学教学改革立项、实验教学改革(SYJG302108)资助

详细信息
    作者简介:

    张勤清 华大学、北京航空航天大学教授. 主要研究方向为系统可靠性, 不确定性因果表达与概率推理.E-mail: qinzhang@tsinghua.edu.cn

    通讯作者:

    董春玲 山东师范大学副教授, 北京航空航天大学计算机学院博士研究生. 主要研究方向为不确定性因果表达与概率推理, 复杂系统故障诊断与决策. 本文通信作者. E-mail: dongchunl@163.com

Research on Weighted Logical Inference for Uncertain Fault Diagnosis

Funds: 

Supported by National Natural Science Foundation of China (61402266, 61273330), Research Foundation for the Doctoral Program of China Ministry of Education (20120002110037), Development Project of China Guangdong Nuclear Power Group (CNPRI-ST10P005), and Teaching Reform and Experiment Teaching Reform Project of Shandong Normal University (SYJG 302108)

  • 摘要: 针对复杂系统故障诊断建模及推理的复杂性、数据不足、领域知识及监测信息不完备等问题, 本文基于动态不确定因果图(Dynamic uncertain causality graph, DUCG)进行权重逻辑推理(Weighted logical inference, WLI)及其数理基础的系统化研究. WLI引入绑定权重系数的逻辑事件推理机制, 可确保变量状态概率的自动归一性和链式推理的自我依赖性, 为多赋值因果关系的简洁、不完备表达提供了解决方案. 由于WLI在信息不完全性和命题真值空间的高维性等方面突破了经典数理逻辑, 为使其理论基础更为坚实, 本文进行了WLI的规范化定义、推理算法补充、运算性质探析, 并就理论相容性和自洽性开展了详细论证. 算法分析及故障诊断实验结果表明, 其高效、准确、较少依赖于参数精确性和数据完备性等特征.
  • [1] Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943(周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943)
    [2] Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: MIT Press, 2009.
    [3] Larrañaga P, Moral S. Probabilistic graphical models in artificial intelligence. Applied Soft Computing, 2011, 11(2): 1511-1528
    [4] Jensen F V, Nielsen T D. Bayesian Networks and Decision Graphs (2nd Edition). New York: Springer, 2007.
    [5] Pearl J. Causality: Models, Reasoning and Inference (2nd Edition). New York: Cambridge University Press, 2009.
    [6] Zhang Q. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases. Journal of Computer Science and Technology, 2012, 27(1): 1-23
    [7] Zhang Q, Dong C L, Cui Y, Yang Z H. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning: statistics base, matrix, and application. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 645-663
    [8] Dong C L, Wang Y J, Zhang Q, Wang N Y. The methodology of dynamic uncertain causality graph for intelligent diagnosis of vertigo. Computer Methods and Programs in Biomedicine, 2014, 113(1): 162-174
    [9] Dong C L, Zhang Q, Geng S C. A modeling and probabilistic reasoning method of dynamic uncertain causality graph for industrial fault diagnosis. International Journal of Automation and Computing, 2014, 11(3): 288-298
    [10] Cheng Qiang, Chen Feng, Dong Jian-Wu, Xu Wen-Li. Variational approximate inference methods for graphical models. Acta Automatica Sinica, 2012, 38(11): 1721-1734(程强, 陈峰, 董建武, 徐文立. 概率图模型中的变分近似推理方法. 自动化学报, 2012, 38(11): 1721-1734)
    [11] Yuan C, Lim H, Lu T C. Most relevant explanation in bayesian networks. Journal of Artificial Intelligence Research, 2011, 42: 309-352
    [12] Yap G E, Tan A H, Pang H H. Explaining inferences in Bayesian networks. Applied Intelligence, 2007, 29(3): 263- 278
    [13] Vomlelová M, Vomlel J. Troubleshooting: NP-hardness and solution methods. Soft Computing —— A Fusion of Foundations, Methodologies and Applications, 2003, 7(5): 357-368
    [14] He H C, Wang H, Liu Y H, Wang Y J, Du Y W. Principle of Universal Logics. Beijing: Science Press, 2006.
    [15] Novák V. Reasoning about mathematical fuzzy logic and its future. Fuzzy Sets and Systems, 2012, 192: 25-44
    [16] He Hua-Can, He Zhi-Tao, Wang Hua. On the second revolution of mathematical logic. CAAL Transactions on Intelligent Systems, 2006, 1(1): 29-37(何华灿, 何智涛, 王华. 论第二次数理逻辑革命. 智能系统学报, 2006, 1(1): 29-37)
    [17] Li Wei. Mathematical Logic: Fundamental Principles and Formal Calculus. Beijing: Science Press, 2008.(李未. 数理逻辑: 基本原理与形式演算. 北京: 科学出版社, 2008.)
    [18] Xu Y, Qin K, Liu J, Song Z. L-valued propositional logic Lvpl. Information Sciences, 1999, 114(1-4): 205-235
    [19] Xu Y, Ruan D, Qin K, Liu J. Lattice-Valued Logic —— An Alternative Approach to Treat Fuzziness and Incomparability. Studies in Fuzziness and Soft Computing. Berlin: Springer, 2003.
    [20] Lai J J, Xu Y. Linguistic truth-valued lattice-valued propositional logic system LP(X) based on linguistic truth-valued lattice implication algebra. Information Sciences, 2010, 180(10): 1990-2002
    [21] Pfeffer A. Sufficiency, separability and temporal probabilistic models. In: Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. 421-428
    [22] Zhou Zhe, Xu Xiao-Bin, Wen Cheng-Lin, Lv Feng. An optimal method for combining conflicting evidences. Acta Automatica Sinica, 2012, 38(6): 976-985(周哲, 徐晓滨, 文成林, 吕锋. 冲突证据融合的优化方法. 自动化学报, 2012, 38(6): 976-985)
  • 加载中
计量
  • 文章访问数:  1917
  • HTML全文浏览量:  146
  • PDF下载量:  1181
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-26
  • 修回日期:  2014-05-27
  • 刊出日期:  2014-12-20

目录

    /

    返回文章
    返回