2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性和非线性动态异构多自主体系统的有限时间一致性

朱亚锟 关新平 罗小元

朱亚锟, 关新平, 罗小元. 线性和非线性动态异构多自主体系统的有限时间一致性. 自动化学报, 2014, 40(11): 2618-2624. doi: 10.3724/SP.J.1004.2014.02618
引用本文: 朱亚锟, 关新平, 罗小元. 线性和非线性动态异构多自主体系统的有限时间一致性. 自动化学报, 2014, 40(11): 2618-2624. doi: 10.3724/SP.J.1004.2014.02618
ZHU Ya-Kun, GUAN Xin-Ping, LUO Xiao-Yuan. Finite-time Consensus of Heterogeneous Multi-agent Systems with Linear and Nonlinear Dynamics. ACTA AUTOMATICA SINICA, 2014, 40(11): 2618-2624. doi: 10.3724/SP.J.1004.2014.02618
Citation: ZHU Ya-Kun, GUAN Xin-Ping, LUO Xiao-Yuan. Finite-time Consensus of Heterogeneous Multi-agent Systems with Linear and Nonlinear Dynamics. ACTA AUTOMATICA SINICA, 2014, 40(11): 2618-2624. doi: 10.3724/SP.J.1004.2014.02618

线性和非线性动态异构多自主体系统的有限时间一致性

doi: 10.3724/SP.J.1004.2014.02618
基金项目: 

Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (60934003, 61074065), Key Project for Natural Science Research of Hebei Education Department (ZD200908), and the Doctor Foundation of Northeastern University at Qinhuangdao (XNB201507)

Finite-time Consensus of Heterogeneous Multi-agent Systems with Linear and Nonlinear Dynamics

Funds: 

Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (60934003, 61074065), Key Project for Natural Science Research of Hebei Education Department (ZD200908), and the Doctor Foundation of Northeastern University at Qinhuangdao (XNB201507)

  • 摘要: 研究了由线性和非线性动态自主体组成的异构多自主体系统的有限时间一致性问题.针对该异构系统提出了非线性的一致性协议,并分别给出了无领航者和有领航者情形下异构系统在有限时间内实现一致性的充分条件.所得结果还推广到具有有向通信拓扑且满足细致平衡条件的多自主体系统情形.最后,给出一些仿真结果来验证所得结论的正确性和有效性.
  • [1] You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2): 101-118 (in Chinese)
    [2] Luo Xiao-Yuan, Shao Shi-Kai, Guan Xin-Ping, Zhao Yuan-Jie. Dynamic generation and control of optimally persistent formation for multi-agent systems. Acta Automatica Sinica, 2012, 38(9): 1431-1438 (in Chinese)
    [3] Ren W, Atkins E. Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 1002-1033 (in Chinese)
    [4] Sun Wei, Dou Li-Hua, Fang Hao. Cooperative pollution supervising and neutralization with multi-actuator-sensor network. Acta Automatica Sinica, 2011, 37(1): 107-112
    [5] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
    [6] Nosrati S, Shafiee M. Time-delay dependent stability robustness of small-world protocols for fast distributed consensus seeking. In: Proceedings of the 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops. Limassol, Cyprus: IEEE, 2007. 1-9
    [7] Zhou J, Wang Q. Convergence speed in distributed consensus over dynamically switching random networks. Automatica, 2009, 45(6): 1455-1461
    [8] Wang L, Xiao F. Finite-time consensus problems for networks of dynamic agents. IEEE Transactions on Automatic Control, 2010, 55(4): 950-955
    [9] Chen G, Lewis F L, Xie L. Finite-time distributed consensus via binary control protocols. Automatica, 2011, 47(9): 1962-1968
    [10] Tanner H G, Christodoulakis D. Decentralized cooperative control of heterogeneous vehicle groups. Robotics and Autonomous Systems, 2007, 55(11): 811-823
    [11] Liu C, Liu F. Stationary consensus of heterogeneous multi-agent systems with bounded communication delays. Automatica, 2011, 47(9): 2130-2133
    [12] Zheng Y S, Wang L. Finite-time consensus of heterogeneous multi-agent systems with and without velocity measurements. Systems & Control Letters, 2012, 61(8): 871-878
    [13] Zhu Y K, Guan X P, Luo X Y. Finite-time consensus of heterogeneous multi-agent systems. Chinese Physics B, 2013, 22(3): 038901
    [14] Godsil C, Royal G F. Algebraic Graph Theory. New York: Springer-Verlag, 2001
    [15] Jiang F C, Wang L. Finite-time information consensus for multi-agent systems with fixed and switching topologies. Physica D: Nonlinear Phenomena, 2009, 238(16): 1550-1560
    [16] Wang X L, Hong Y G. Distributed finite-time χ-consensus algorithms for multi-agent systems with variable coupling topology. Journal of Systems Science and Complexity, 2010, 23(2): 209-218
    [17] Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Systems & Control Letters, 1992, 19(6): 467-473
    [18] Hong Y G. Finite-time stabilization and stabilizability of a class of controllable systems. Systems & Control Letters, 2002, 46(4): 231-236
    [19] Zheng Y S, Wang L. Finite-time consensus of heterogeneous multi-agent systems with and without velocity measurements. Systems & Control Letters, 2012, 61(8): 871-878
    [20] Hua C C, Liu P. A new coordinated slave torque feedback control algorithm for network-based teleoperation systems. IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 764-774
    [21] Li S H, Du H B, Lin X Z. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica, 2011, 47(8): 1706-1712
  • 加载中
计量
  • 文章访问数:  1750
  • HTML全文浏览量:  143
  • PDF下载量:  1709
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-17
  • 修回日期:  2013-10-08
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回