2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切换信息拓扑和时变时滞下离散时间线性多智能体系统一致性的平均驻留时间条件

盖彦荣 陈阳舟 张亚霄

盖彦荣, 陈阳舟, 张亚霄. 切换信息拓扑和时变时滞下离散时间线性多智能体系统一致性的平均驻留时间条件. 自动化学报, 2014, 40(11): 2609-2617. doi: 10.3724/SP.J.1004.2014.02609
引用本文: 盖彦荣, 陈阳舟, 张亚霄. 切换信息拓扑和时变时滞下离散时间线性多智能体系统一致性的平均驻留时间条件. 自动化学报, 2014, 40(11): 2609-2617. doi: 10.3724/SP.J.1004.2014.02609
GE Yan-Rong, CHEN Yang-Zhou, ZHANG Ya-Xiao. Average Dwell-time Conditions for Consensus of Discrete-time Linear Multi-agent Systems with Switching Topologies and Time-varying Delays. ACTA AUTOMATICA SINICA, 2014, 40(11): 2609-2617. doi: 10.3724/SP.J.1004.2014.02609
Citation: GE Yan-Rong, CHEN Yang-Zhou, ZHANG Ya-Xiao. Average Dwell-time Conditions for Consensus of Discrete-time Linear Multi-agent Systems with Switching Topologies and Time-varying Delays. ACTA AUTOMATICA SINICA, 2014, 40(11): 2609-2617. doi: 10.3724/SP.J.1004.2014.02609

切换信息拓扑和时变时滞下离散时间线性多智能体系统一致性的平均驻留时间条件

doi: 10.3724/SP.J.1004.2014.02609
基金项目: 

Supported by National Natural Science Foundation of China (61079001, 61273006), National High Technology Research and Development Program of China (863 Program) (2011AA110301), Specialized Research Fund for the Doctoral Program of Higher Education of China (20111103110017), Hebei Province Science and Technology Research and Development Planning Project (10203548D), Hebei Province Science and Technology Planning Project (13210807) Hebei Province Science and Technology Conditions Building Program (11963546D)

Average Dwell-time Conditions for Consensus of Discrete-time Linear Multi-agent Systems with Switching Topologies and Time-varying Delays

Funds: 

Supported by National Natural Science Foundation of China (61079001, 61273006), National High Technology Research and Development Program of China (863 Program) (2011AA110301), Specialized Research Fund for the Doctoral Program of Higher Education of China (20111103110017), Hebei Province Science and Technology Research and Development Planning Project (10203548D), Hebei Province Science and Technology Planning Project (13210807) Hebei Province Science and Technology Conditions Building Program (11963546D)

  • 摘要: 研究了有向切换信息拓扑和时变时滞下离散时间线性多智能体系统的一致性问题.首先,通过适当的线性变换把一致性问题转化为相应的时变时滞线性切换系统的渐近稳定问题; 然后,利用构建的李亚普诺夫函数和平均驻留时间模式,建立了一致性问题可解的基于线性矩阵不等式的时滞依赖充分条件,研究了如下两种情形: 1)所有信息拓扑都是可一致的,2) 部分信息拓扑是可一致的; 最后,数值实例验证了结果的正确性.
  • [1] Lynch N A. Distributed Algorithms. San Francisco, CA: Morgan Kaufmann, 1996.
    [2] Chen J, Yu M, Dou L H, Gan M G. A fast averaging synchronization algorithm for clock oscillators in nonlinear dynamical network with arbitrary time-delays. Acta Automatica Sinica, 2010, 36(6): 873-880
    [3] Tsitsiklis J N, Athans M. Convergence and asymptotic agreement in distributed decision problems. IEEE Transactions on Automatic Control, 1984, 29(1): 42-50
    [4] Carli R, Chiuso A, Schensto L, Zampieri S. Distributed Kalman filtering based on consensus strategies. IEEE Journal on Selected Areas in Communications, 2008, 26(4): 622-633
    [5] Serpedin E, Chaudhari Q M. Synchronization in Wireless Sensor Networks: Parameter Estimation, Performance Benchmarks, and Protocols. New York: Cambridge University Press, 2009.
    [6] Olfati-Saber R, Jalalkamali P. Coupled distributed estimation and control for mobile sensor networks. IEEE Transactions on Automatic Control, 2012, 57(10): 2609-2614
    [7] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476
    [8] Ren W. On consensus algorithms for double-integrator dynamics. IEEE Transactions on Automatic Control, 2008, 53(6): 1503-1509
    [9] Huang Q Z. Consensus analysis of multi-agent discrete-time systems. Acta Automatica Sinica, 2012, 38(7): 1127-1133
    [10] Yan J, Guan X P, Luo X Y, Yang X. Consensus and trajectory planning with input constraints for multi-agent systems. Acta Automatica Sinica, 2012, 38(7): 1074-1082
    [11] Ge Y R, Chen Y Z, Zhang Y X, He Z H. State consensus analysis and design for high-order discrete-time linear multiagent systems. Mathematical Problems in Engineering, 2013, 2013, Article ID 192351
    [12] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661
    [13] Kingston D B, Beard R W. Discrete-time average-consensus under switching network topologies. In: Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota: IEEE, 2006. 3551-3557
    [14] Xiao F, Wang L. State consensus for multi-agent systems with switching topologies and time-varying delays. International Journal of Control, 2006, 79(10): 1277-1284
    [15] Xiao F, Wang L. Consensus protocols for discrete-time multi-agent systems with time-varying delays. Automatica, 2008, 44(10): 2577-2582
    [16] Gao Y P, Ma J W, Zuo M, Jiang T Q, Du J P. Consensus of discrete-time second-order agents with time-varying topology and time-varying delays. Journal of the Franklin Institute, 2012, 349(8): 2598-2608
    [17] Lin P, Jia Y M. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica, 2009, 45(9): 2154-2158
    [18] Su Y F, Huang J. Two consensus problems for discrete-time multi-agent systems with switching network topology. Automatica, 2012, 48(9): 1988-1997
    [19] Li Z K, Duan Z H, Chen G R. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems-Series B, 2011, 16(6): 489-505
    [20] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [21] Sun Y G, Wang L, Xie G M. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Systems and Control Letters, 2008, 57(2): 175-183
    [22] Jadbabaie A, Lin J, Morse S A. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001
    [23] Liu T, Zhao J, Hill D J. Exponential synchronization of complex delayed dynamical networks with switching topology. IEEE Transactions on Circuits and Systems, 2010, 57(11): 2967-2980
    [24] Chen Y Z, Zhang Y X, He Z H, Ge Y R. Average dwell-time conditions of switching information topologies for consensus of linear multi-agent systems. In: Proceedings of the 32nd Chinese Control Conference, Xi'an, China: IEEE, 2013. 7115-7120
    [25] Hespanha J P, Morse A S. Stability of switched systems with average dwell-time. In: Proceedings of the 38th IEEE Conference on Decision and Control. Phoenix, Arizona, USA: IEEE, 1999. 2655-2660
    [26] Zhai G S, Hu B, Yasuda K, Michel A N. Qualitative analysis of discrete-time switched systems. In: Proceedings of the American Control Conference. Anchorage, AK: IEEE, 2002. 1880-1885
    [27] Zhang W A, Yu L. Stability analysis for discrete-time switched time-delay systems. Automatica, 2009, 45(10): 2265-2271
    [28] Zhang D, Yu L, Zhang W A. Delay-dependent fault detection for switched linear systems with time-varying delays-the average dwell time approach. Signal Processing, 2011, 91(4): 832-840
    [29] Wu Z G, Shi P, Su H Y, Chu J. Delay-dependent exponential stability analysis for discrete-time switched neural networks with time-varying delay. Neurocomputing, 2011, 74(10): 1626-1631
    [30] Horn R A, Johnson C R. Matrix Analysis. Cambridge U. K.: Cambridge University Press, 1987
    [31] Vorotnikov V I. Partial Stability and Control. Basel Berlin: Birkhauser Boston, 1997.
    [32] Gao H J, Chen T W. New results on stability of discrete-time systems with time-varying state delay. IEEE Transactions on Automatic Control, 2007, 52(2): 328-334
  • 加载中
计量
  • 文章访问数:  1459
  • HTML全文浏览量:  93
  • PDF下载量:  1012
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-21
  • 修回日期:  2013-10-29
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回