2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有不确定时变延时的有向网络多智能体平均一致性研究

王朝霞 杜大军 费敏锐

王朝霞, 杜大军, 费敏锐. 带有不确定时变延时的有向网络多智能体平均一致性研究. 自动化学报, 2014, 40(11): 2602-2608. doi: 10.3724/SP.J.1004.2014.02602
引用本文: 王朝霞, 杜大军, 费敏锐. 带有不确定时变延时的有向网络多智能体平均一致性研究. 自动化学报, 2014, 40(11): 2602-2608. doi: 10.3724/SP.J.1004.2014.02602
WANG Zhao-Xia, DU Da-Jun, FEI Min-Rui. Average Consensus in Directed Networks of Multi-agents with Uncertain Time-varying Delays. ACTA AUTOMATICA SINICA, 2014, 40(11): 2602-2608. doi: 10.3724/SP.J.1004.2014.02602
Citation: WANG Zhao-Xia, DU Da-Jun, FEI Min-Rui. Average Consensus in Directed Networks of Multi-agents with Uncertain Time-varying Delays. ACTA AUTOMATICA SINICA, 2014, 40(11): 2602-2608. doi: 10.3724/SP.J.1004.2014.02602

带有不确定时变延时的有向网络多智能体平均一致性研究

doi: 10.3724/SP.J.1004.2014.02602
基金项目: 

Supported by National Natural Science Foundation of China (61074032, 61473182, 61104089), National High Technology Research and Development Program of China (863 Program)(2011AA040103-7), Project of Science and Technology Commission of Shanghai Municipality (10JC1405000, 11ZR1413100,14JC1402200), and Shanghai Rising-Star Program (13QA1401600)

Average Consensus in Directed Networks of Multi-agents with Uncertain Time-varying Delays

Funds: 

Supported by National Natural Science Foundation of China (61074032, 61473182, 61104089), National High Technology Research and Development Program of China (863 Program)(2011AA040103-7), Project of Science and Technology Commission of Shanghai Municipality (10JC1405000, 11ZR1413100,14JC1402200), and Shanghai Rising-Star Program (13QA1401600)

  • 摘要: 针对带有不确定时变通信延时的有向网络多智能体系统的平均一致性问题,本文首先深入分析了弱连接且平衡的固定/切换拓扑特性.然后,通过分解系统状态变量,建立了初始系统的降维综合模型.考虑降维模型带有不确定时变延时,基于Jensen's不等式和最近提出的新型互凸方法,得到了系统平均一致性的充分条件,特别是,给出了与目前研究结果相比具有更小保守性的时变通信延时上界.最后,数值仿真验证了提出方法的可行性和有效性.
  • [1] Cao Y C, Yu W W, Ren W, Chen G R. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial Informatics, 2013, 99(1): 427-438
    [2] Reynolds C W. Flocks, herds and schools: a distributed behavioral model. Computer Graphics, 1987, 21(4): 25-34
    [3] Degroot M H. Reaching a consensus. Journal of the American Statistical Association, 1974, 69(345): 118-121
    [4] Xiao L, Boyd S. Fast linear iterations for distributed averaging. Systems & Control Letters, 2004, 53(1): 65-78
    [5] Cortés J, Bullo F. Coordination and geometric optimization via distributed dynamical systems. SIAM Journal on Control and Optimization, 2005, 44(5): 1543-1574
    [6] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
    [7] Benediktsson J A, Swain P H. Consensus theoretic classification methods. IEEE Transactions on Systems, Man, and Cybernetics, 1992, 22(4): 688-704
    [8] Xiao F, Wang L. State consensus for multi-agent systems with switching topologies and time-varying delays. International Journal of Control, 2006, 79(10): 1277-1284
    [9] Xiao F,Wang L. Consensus protocols for discrete-time multiagent systems with time-varying delays. Automatica, 2008, 44(10): 2577-2582
    [10] Lu W L, Atay F M, Jost J. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6(2): 329-349
    [11] Liu Y R, Ho DWC,Wang Z D. A new framework for consensus for discrete-time directed networks of multi-agents with distributed delays. International Journal of Control, 2012, 85(11): 1755-1765
    [12] Chen Y, Lu J H, Lin Z L. Consensus of discrete-time multiagent systems with transmission nonlinearity. Automatica, 2013, 49(6): 1768-1775
    [13] Huang Q Z. Consensus analysis of multi-agent discrete-time systems. Acta Automatica Sinica, 2012, 38(7): 1127-1133
    [14] Zhang Q J, Niu Y F, Wang L, Shen L C, Zhu H Y. Average consensus seeking of high-order continuous-time multi-agent systems with multiple time-varying communication delays. International Journal of Control Automation and Systems, 2011, 9(6): 1209-1218
    [15] Gao Y P, Wang L. Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Transactions on Automatic Control, 2011, 56(5): 1226-1231
    [16] Chen W S, Li X B, Jiao L C. Quantized consensus of second-order continuous-time multi-agent systems with a directed topology via sampled data. Automatica, 2013, 49(7): 2236-2242
    [17] Sun F L, Guan Z H, Ding L, Wang Y W. Mean square average-consensus for multi-agent systems with measurement noise and time delay. International Journal of Systems Science, 2013, 44(6): 995-1005
    [18] Guan Z H, Liu Z W, Feng G, Jian M. Impulsive consensus algorithms for second-order multi-agent networks with sampled information. Automatica, 2012, 48(7): 1397-1404
    [19] Yan J, Guan X P, Luo X Y, Yang X. Consensus and trajectory planning with input constraints for multi-agent systems. Acta Automatica Sinica, 2012, 38(7): 1074-1082
    [20] Cao X B, Guo H B, Zhang S J. Information topologyindependent consensus criteria for second-order systems under directed graph. Acta Automatica Sinica, 2013, 39(7): 995-1002
    [21] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [22] Sun Y G, Wang L, Xie G M. Average consensus in networks of dynamic agents withswitching topologies and multiple time-varying delays. Systems & Control Letters, 2008, 57(2): 175-183
    [23] Zhang Y, Tian Y P. Consensus of data-sampled multiagent systems with random communication delay and packet loss. IEEE Transactions on Automatic Control, 2010, 55(4): 939-943
    [24] Zeng L, Hu G D. Consensus of linear multi-agent systems with communication and input delays. Acta Automatica Sinica, 2013, 39(7): 1133-1140
    [25] Lin P, Jia Y M. Average consensus in networks of multiagents with both switching topology and coupling timedelay. Physica A: Statistical Mechanics and its Applications, 2008, 387(1): 303-313
    [26] Lin P, Jia Y M, Lin L. Distributed robust H1 consensus control in directed networks of agents with time-delay. Systems & Control Letters, 2008, 57(8): 643-653
    [27] Zhang T C, Yu H. Average consensus for directed networks of multi-agent with time-varying delay. In: Proceedings of the International Conference on Advances in Swarm Intelligence, Pt 1. Berlin, GER: Springer-Verlag, 2010. 723-730
    [28] Sun Y G, Wang L, Ruan J. Average consensus of multiagent systems with communication time delays and noisy links. Chinese Physics B, 2013, 22(3): 030510-1-030510-9
    [29] Qin J H, Gao H J, Zheng W X. On average consensus in directed networks of agents with switching topology and time delay. International Journal of Systems Science, 2011, 42(12): 1974-1956
    [30] Sun Y G, Wang L. Consensus of multi-agent systems in directed networks with nonuniform time-varying delays. IEEE Transactions on Automatic Control, 2009, 54(7): 1607-1613
    [31] Chen J H, Xie D M, Yu M. Consensus problem of networked multi-agent systems with constant communication delay: stochastic switching topology case. International Journal of Control, 2012, 85(9): 1248-1262
    [32] Xie D M, Chen J H. Consensus problem of data-sampled networked multi-agent systems with time-varying communication delays. Transactions of the Institute of Measurement and Control, 2013, 35(6): 753-763
    [33] Tang Y, Gao H J, Zou W, Kurths J. Distributed synchronization in networks of agent systems with nonlinearities and random switchings. IEEE Transactions on Cybernetics, 2013, 43(1): 358-370
    [34] Ji L H, Liao X F. Consensus problems of first-order dynamic multi-agent systems with multiple time delays. Chinese Physics B, 2013, 22(4): 040203-1-040203-6
    [35] Godsil C D, Gordon G F. Algebraic Graph Theory. New York: Springer, 2001.
    [36] Park P G, Ko J W, Jeong C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 2011, 47(1): 235-238
    [37] Gu K, Kharitonov V L, Chen J. Stability of Time-delay Systems. Boston: Birkhauser, 2003.
  • 加载中
计量
  • 文章访问数:  1349
  • HTML全文浏览量:  69
  • PDF下载量:  1070
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2013-09-04
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回