2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网络化拉格朗日系统协调跟踪控制: 算法与实验

陈刚 岳元龙 林青

陈刚, 岳元龙, 林青. 网络化拉格朗日系统协调跟踪控制: 算法与实验. 自动化学报, 2014, 40(11): 2563-2572. doi: 10.3724/SP.J.1004.2014.02563
引用本文: 陈刚, 岳元龙, 林青. 网络化拉格朗日系统协调跟踪控制: 算法与实验. 自动化学报, 2014, 40(11): 2563-2572. doi: 10.3724/SP.J.1004.2014.02563
CHEN Gang, YUE Yuan-Long, LIN Qing. Cooperative Tracking Control for Networked Lagrange Systems: Algorithms and Experiments. ACTA AUTOMATICA SINICA, 2014, 40(11): 2563-2572. doi: 10.3724/SP.J.1004.2014.02563
Citation: CHEN Gang, YUE Yuan-Long, LIN Qing. Cooperative Tracking Control for Networked Lagrange Systems: Algorithms and Experiments. ACTA AUTOMATICA SINICA, 2014, 40(11): 2563-2572. doi: 10.3724/SP.J.1004.2014.02563

网络化拉格朗日系统协调跟踪控制: 算法与实验

doi: 10.3724/SP.J.1004.2014.02563
基金项目: 

Supported by National Natural Science Foundation of China (61273108), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities (106112013CDJZR175501)

Cooperative Tracking Control for Networked Lagrange Systems: Algorithms and Experiments

Funds: 

Supported by National Natural Science Foundation of China (61273108), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities (106112013CDJZR175501)

  • 摘要: 针对参数不确定条件下的网络化拉格朗日系统,提出了一种基于Lyapunov理论的分布式自适应协调控制器设计方法.区别于现有的网络化拉格朗日系统控制方法,本文的方法适用于更广泛的有向通信拓扑系统,即只要求通信拓扑包含一棵具有动态领导节点的生成树.进一步考虑邻节点系统的速度信息未知的情形,提出一种基于分布式滤波器的自适应协调跟踪控制方法.最后,给出了一个网络化多机械臂实验平台,进行了实验研究,验证了算法的有效性.
  • [1] Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6): 1226-1229
    [2] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001
    [3] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [4] Ren W, Beard R. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661
    [5] Lin Z Y, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127
    [6] Chopra N, Spong M W. Passivity-based control of multi-agent systems. Advances in Robot Control: From Everyday Physics to Human-Like Movements. New York: Springer Verlag, 2006. 107-134
    [7] Arcak M. Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, 2007, 52(8): 1380-1390
    [8] Hong Y G, Gao L X, Cheng D Z, Hu J P. Lyapunov-based approach to multiagent systems with switching jointly connected interaction. IEEE Transactions on Automatic Control, 2007, 52(5): 943-948
    [9] Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 2007, 27(2): 71-82
    [10] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
    [11] Li Z K, Duan Z S, Chen G R, Huang L. Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Transactions on Circuits and Systems I, 2010, 57(1): 213-224
    [12] Ren W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. International Journal of Control, 2009, 82(1): 2137-2149
    [13] Mei J, Ren W, Ma G F. Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems. IEEE Transactions on Automatic Control, 2011, 56(6): 1415-1421
    [14] Hokayem P F, Stipanovic D M, Spong M W. Semiautonomous control of multiple networked Lagrangian systems. International Journal of Robust and Nonlinear Control, 2009, 19(18): 2040-2055
    [15] Chung S J, Slotine J J E. Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Transactions on Robotics, 2009, 25(3): 686-700
    [16] Sun D, Shao X Y, Feng G. A model-free cross-coupled control for position synchronization of multi-axis motions: theory and experiments. IEEE Transactions on Control Systems Technology, 2007, 15(2): 306-314
    [17] Chen Gang, Yu Ming. Synchronizing control and analysis of distributed passive systems. Acta Automatica Sinica, 2012, 38(5): 882-888 (in Chinese)
    [18] Qu Z. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. New York: Springer-Verlag, 2009
    [19] Xie G M, Wang L. Consensus control for a class of networks of dynamic agents. International Journal of Robust and Nonlinear Control, 2007, 7(10-11): 941-957
    [20] Ma H B. Decentralized adaptive synchronization of a stochastic discrete-time multi-agent dynamic model. SIAM Journal on Control and Optimization, 2009, 48(2): 859-880
    [21] Ma H B, Zhao Y L, Fu M Y, Yang C G. Decentralized adaptive control for a class of semi-parametric uncertain multi-agent systems. In: Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012. 2060-2065
  • 加载中
计量
  • 文章访问数:  1428
  • HTML全文浏览量:  64
  • PDF下载量:  856
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-17
  • 修回日期:  2013-12-24
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回