2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续时间模型的多智能体系统采样数据一致性

张协衍 章兢

张协衍, 章兢. 基于连续时间模型的多智能体系统采样数据一致性. 自动化学报, 2014, 40(11): 2549-2555. doi: 10.3724/SP.J.1004.2014.02549
引用本文: 张协衍, 章兢. 基于连续时间模型的多智能体系统采样数据一致性. 自动化学报, 2014, 40(11): 2549-2555. doi: 10.3724/SP.J.1004.2014.02549
ZHANG Xie-Yan, ZHANG Jing. Sampled-data Consensus of Multi-agent Systems with General Linear Dynamics Based on a Continuous-time Model. ACTA AUTOMATICA SINICA, 2014, 40(11): 2549-2555. doi: 10.3724/SP.J.1004.2014.02549
Citation: ZHANG Xie-Yan, ZHANG Jing. Sampled-data Consensus of Multi-agent Systems with General Linear Dynamics Based on a Continuous-time Model. ACTA AUTOMATICA SINICA, 2014, 40(11): 2549-2555. doi: 10.3724/SP.J.1004.2014.02549

基于连续时间模型的多智能体系统采样数据一致性

doi: 10.3724/SP.J.1004.2014.02549
基金项目: 

Supported by National Natural Science Foundation of China (61174140) and Hunan Provincial Innovation Foundation for Postgraduate (CX2011B157)

Sampled-data Consensus of Multi-agent Systems with General Linear Dynamics Based on a Continuous-time Model

Funds: 

Supported by National Natural Science Foundation of China (61174140) and Hunan Provincial Innovation Foundation for Postgraduate (CX2011B157)

  • 摘要: 讨论了一般线性模型的多智能体系统具有时变采样间隔的采样数据一致性问题.首先基于连续时间模型,利用采样数据的离散时间特性分析时变采样间隔允许的上界.由于不考虑采样间隔之间的状态,Lyapunov函数仅需要在每个采样时刻保证递减.由此得到了一个利用线性矩阵不等式求解更低保守性的时变采样间隔上界的方法.接着通过参数化矩阵变量得到了基于线性矩阵不等式的控制器设计方法.最后数值仿真展示了理论结果的正确性.
  • [1] Ren W, Cao Y C. Distributed Coordination of Multi-agent Networks. London: Springer-Verlag, 2011.
    [2] Ren W, Beard R W. Distributed Consensus in Multi-vehicle Cooperative Control. London: Springer-Verlag, 2008.
    [3] Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE, 2007, 95(1): 139-162
    [4] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
    [5] Zhang L X, Gao H J, Kaynak O. Network-induced constraints in networked control systems-a survey. IEEE Transactions on Industrial Informatics, 2013, 9(1): 403-416
    [6] Hayakawa T, Matsuzawa T, Hara S. Formation control of multi-agent systems with sampled information relationship between information exchange structure and control performance. In: Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, CA: IEEE, 2006. 4333-4338
    [7] Xie G M, Liu H Y, Wang L, Jia Y M. Consensus in networked multi-agent systems via sampled control fixed topology case. In: Proceedings of the 2009 American Control Conference. St. Louis, MO: IEEE, 2009. 3902-3907
    [8] Xie G M, Liu H Y, Wang L, Jia Y M. Consensus in networked multi-agent systems via sampled control switching topology case. In: Proceedings of the 2009 American Control Conference. St. Louis, MO: IEEE, 2009. 4525-4530
    [9] Ren W, Cao Y C. Convergence of sampled-data consensus algorithms for double-integrator dynamics. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 3965-3970
    [10] Ren W, Cao Y C. Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting. International Journal of Robust and Nonlinear Control, 2010, 20(9): 987-1000
    [11] Liu H Y, Xie G M, Wang L. Necessary and sufficient conditions for solving consensus problems of double-integrator dynamics via sampled control. International Journal of Robust and Nonlinear Control, 2010, 20(15): 1706-1722
    [12] Qin J, Zheng W X, Gao H. Convergence analysis for multiple agents with double-integrator dynamics in a sampled-data setting. IET Control Theory and Application, 2011, 5(18): 2089-2097
    [13] Gao Y, Wang L. Consensus of multiple dynamic agents with sampled information. IET Control Theory and Application, 2010, 4(6): 945-956
    [14] Gao Y P, Wang L. Consensus of multiple double-integrator agents with intermittent measurement. International Journal of Robust and Nonlinear Control, 2010, 20(10): 1140-1155
    [15] Wang S, Xie D. Consensus of second-order multi-agent systems via sampled control undirected fixed topology case. IET Control Theory and Application, 2012, 6(7): 893-899
    [16] Xiao F, Chen T W. Sampled-data consensus for multiple double integrators with arbitrary sampling. IEEE Transactions on Automatic Control, 2012, 57(12): 3230-3235
    [17] Wen G H, Duan Z S, Yu W W, Chen G R. Consensus of multi-agent systems with nonlinear dynamics and sampled-data information a delayed-input approach. International Journal of Robust and Nonlinear Control, 2013, 23(6): 602-619
    [18] Qin J H, Gao H J. A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE Transactions on Automatic Control, 2012, 57(9): 2417-2422
    [19] Tang Z J, Huang T Z, Shao J L, Hu J P. Leader-following consensus for multi-agent systems via sampled-data control. IET Control Theory and Application, 2011, 5(14): 1658-1665
    [20] Zhao H Y, Xu S Y, Yuan D M. Consensus of data-sampled multi-agent systems with Markovian switching topologies. Asian Journal of Control, 2012, 14(5): 1366-1373
    [21] Gao Y P, Liu B, Zuo M, Jiang T Q, Yu J Y. Consensus of continuous-time multiagent systems with general linear dynamics and nonuniform sampling. Mathematical Problems in Engineering, 2013, 2013, Article ID718759, DOI: 10.1155/2013/718759
    [22] Liu Z W, Guan Z H, Shen X M, Feng G. Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements. IEEE Transactions on Automatic Control, 2012, 57(10): 2639-2643
    [23] Guan Z H, Liu Z W, Feng G, Jian M. Impulsive consensus algorithms for second-order multi-agent networks with sampled information. Automatica, 2012, 48(7): 1397-1404
    [24] Seuret A. A novel stability analysis of linear systems under asynchronous samplings. Automatica, 2012, 48(1): 177-182
    [25] Skelton R E, Tetsuya I, Grigoriadis K M. A Unified Algebraic Approach to Linear Control Design. London: Taylor and Francis Group, 1998.
    [26] Li Z K, Duan Z S, Chen G R, Huang L. Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Transactions on Circuits and Systems-I, 2010, 57(1): 213-224
  • 加载中
计量
  • 文章访问数:  1547
  • HTML全文浏览量:  96
  • PDF下载量:  1161
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-21
  • 修回日期:  2013-10-08
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回