2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切换有向拓扑中的网络化Euler-Lagrange系统自适应同步控制

郭海波 李化义 仲惟超 张世杰 曹喜滨

郭海波, 李化义, 仲惟超, 张世杰, 曹喜滨. 切换有向拓扑中的网络化Euler-Lagrange系统自适应同步控制. 自动化学报, 2014, 40(11): 2541-2548. doi: 10.3724/SP.J.1004.2014.02541
引用本文: 郭海波, 李化义, 仲惟超, 张世杰, 曹喜滨. 切换有向拓扑中的网络化Euler-Lagrange系统自适应同步控制. 自动化学报, 2014, 40(11): 2541-2548. doi: 10.3724/SP.J.1004.2014.02541
GUO Hai-Bo, LI Hua-Yi, ZHONG Wei-Chao, ZHANG Shi-Jie, CAO Xi-Bin. Adaptive Synchronization of Networked Euler-Lagrange Systems with Directed Switching Topology. ACTA AUTOMATICA SINICA, 2014, 40(11): 2541-2548. doi: 10.3724/SP.J.1004.2014.02541
Citation: GUO Hai-Bo, LI Hua-Yi, ZHONG Wei-Chao, ZHANG Shi-Jie, CAO Xi-Bin. Adaptive Synchronization of Networked Euler-Lagrange Systems with Directed Switching Topology. ACTA AUTOMATICA SINICA, 2014, 40(11): 2541-2548. doi: 10.3724/SP.J.1004.2014.02541

切换有向拓扑中的网络化Euler-Lagrange系统自适应同步控制

doi: 10.3724/SP.J.1004.2014.02541
基金项目: 

Supported by National Natural Science Foundation of China (60904051), the Innovative Team Program of the National Natural Science Foundation of China (61021002), and the Royal Academy of Engineering-Research Exchanges with China and India Awards

Adaptive Synchronization of Networked Euler-Lagrange Systems with Directed Switching Topology

Funds: 

Supported by National Natural Science Foundation of China (60904051), the Innovative Team Program of the National Natural Science Foundation of China (61021002), and the Royal Academy of Engineering-Research Exchanges with China and India Awards

  • 摘要: 在动态切换拓扑中研究了带有参数不确定性和单向信息交互的网络化Euler-Lagrange系统的协同控制问题.针对通信拓扑随时间变化的问题,利用有效的局部信息交互设计了一个分布式控制律,并利用自适应技术解决了系统动力学中的参数不确定性问题.通过构造一个连续的Lyapunov函数,证明了系统在切换拓扑的并图存在一棵有向生成树的频率足够高时即可实现网络同步.此外,进一步拓展使用简单的干扰观测器或滑模控制方法进一步研究了该协同策略下的干扰抑制问题.最后,以五颗异构航天器的姿态同步为背景,通过数值仿真及其对照说明了所提合作控制策略的有效性.
  • [1] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988 -1001
    [2] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655 -661
    [3] Lin Z Y, Broucke M, Francis B. Local control strategies for groups of mobile autonomous agents. IEEE Transactions on Automatic Control, 2004, 49(4): 622-629
    [4] Tanner H G, Jadbabaie A, Pappas G J. Flocking in fixed and switching networks. IEEE Transactions on Automatic Control, 2007, 52(5): 863-868
    [5] Hong Y G, Gao L X, Cheng D Z, Hu J P. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Transactions on Automatic Control, 2007, 52(5): 943-948
    [6] Ren W. On consensus algorithms for double-integrator dynamics. IEEE Transactions on Automatic Control, 2008, 53(6): 1503-1509
    [7] Ren W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. International Journal of Control, 2009, 82(11): 2137-2149
    [8] Chung S J, Slotine J. Cooperative robot control and concurrent synchronization of lagrangian systems. IEEE Transactions on Robotics, 2009, 25(3): 686-700
    [9] Chopra N, Liu Y C. Controlled synchronization of mechanical systems. Proceedings of the Asme Dynamic Systems and Control Conference 2008, PTS A and B, 2009: 823-830
    [10] Dong W J. On consensus algorithms of multiple uncertain mechanical systems with a reference trajectory. Automatica, 2011, 47(9): 2023-2028
    [11] Mei J, Ren W, Ma G F. Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems. IEEE Transactions on Automatic Control, 2011, 56(6): 1415 -1421
    [12] Yang Z, Shibuya Y, Qin P. Distributed robust control for synchronised tracking of networked Euler-Lagrange systems. International Journal of Systems Science, 2013, 59: 1-13
    [13] Nuno E, Ortega R, Jayawardhana B, Basanez L. Coordination of multi-agent Euler-Lagrange systems via energy-shaping: Networking improves robustness. Automatica, 2013, 49(10): 3065-3071
    [14] Nuno E, Ortega R, Basanez L, Hill D. Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays. IEEE Transactions on Automatic Control, 2011, 56(4): 935-941
    [15] Chen G, Lewis F L. Distributed adaptive controller design for the unknown networked Lagrangian systems. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC). Atlanta, GA: IEEE, 2010. 6698-6703
    [16] Meng Z Y, Lin Z L, Ren W. Leader-follower swarm tracking for networked Lagrange systems. Systems and Control Letters, 2012, 61(1): 117-126
    [17] Mehrabian A R, Tafazoli S, Khorasani K. Reconfigurable cooperative control of networked Lagrangian systems under actuator saturation constraints. Control Theory and Applications, IET, 2012, 6(4): 578-587
    [18] Mei J, Ren W, Chen J, Ma G. Distributed adaptive coordination for multiple Lagrangian systems under a directed graph without using neighbors' velocity information. Automatica, 2013, 49(6): 1723-1731
    [19] Yang Q K, Fang H, Mao Y T, Huang J, Sun J. Distributed tracking for networked Euler-Lagrange systems using only relative position measurements. In: Proceedings of the 9th Asian Control Conference (ASCC). Istanbul: IEEE, 2013. 1 -6
    [20] Min H, Sun F, Wang S, Li H. Distributed adaptive consensus algorithm for networked Euler-Lagrange systems. IET Control Theory and Applications, 2011, 5(1): 145-154
    [21] Chung S J, Bandyopadhyay S, Chang I, Hadaegh F Y. Phase synchronization control of complex networks of Lagrangian systems on adaptive digraphs. Automatica, 2013, 49(5): 1148-1161
    [22] Liu Y, Min H B, Wang S C, Liu Z G, Liao S Y. Distributed adaptive consensus for multiple mechanical systems with switching topologies and time-varying delay. Systems and Control Letters, 2013, 64: 119-126
    [23] Cortes J. Discontinuous dynamical systems — a tutorial on solutions, nonsmooth analysis, and stability. IEEE Control Systems Magazine, 2008, 28(3): 36-73
    [24] Ren W, Beard R W. Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications. New York: Springer Verlag, 2008
    [25] Chung S J, Ahsun U, Slotine J. Application of synchronization to formation flying spacecraft: Lagrangian approach. Journal of Guidance Control and Dynamics, 2009, 32(2): 512-526
    [26] Ren W. Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Transactions on Control Systems Technology, 2010, 18(2): 383-392
  • 加载中
计量
  • 文章访问数:  1290
  • HTML全文浏览量:  86
  • PDF下载量:  965
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2014-01-20
  • 刊出日期:  2014-11-20

目录

    /

    返回文章
    返回